Page 86 - Avian Virology: Current Research and Future Trends
P. 86

Newcastle Disease Virus |   79
            of lentogenic, mesogenic, and velogenic Newcastle Disease virus   Pantua, H.D., McGinnes, L.W., Peeples, M.E., and Morrison, T.G. (2006).
            strains in day-old chickens. Vet. Pathol.  53, 53–64. https://doi.  Requirements for the assembly and release of Newcastle disease
            org/10.1177/0300985815600504                          virus-like particles. J. Virol. 80, 11062–11073.
          Murulitharan, K., Yusoff, K., Omar, A.R., and Molouki, A. (2013).   Park, M.S., Shaw, M.L., Muñoz-Jordan, J., Cros, J.F., Nakaya, T., Bouvier, N.,
            Characterization of Malaysian velogenic NDV strain AF2240-I genomic   Palese, P., García-Sastre, A., and Basler, C.F. (2003). Newcastle disease
            sequence: a comparative study. Virus Genes 46, 431–440. https://doi.  virus (NDV)-based assay demonstrates interferon-antagonist activity for
            org/10.1007/s11262-012-0874-y                         the NDV V protein and the Nipah virus V, W, and C proteins. J. Virol. 77,
          Nagai, Y., Klenk, H.D., and Rott, R. (1976). Proteolytic cleavage of the viral   1501–1511.
            glycoproteins and its significance for the virulence of Newcastle disease   Park, M.S., Steel, J., García-Sastre, A., Swayne, D., and Palese, P. (2006).
            virus. Virology 72, 494–508.                          Engineered viral vaccine constructs with dual specificity: avian influenza
          Nakaya, T., Cros, J., Park, M.S., Nakaya, Y., Zheng, H., Sagrera, A., Villar,   and Newcastle disease. Proc. Natl. Acad. Sci. U.S.A. 103, 8203–8208.
            E., García-Sastre, A., and Palese, P. (2001). Recombinant Newcastle   Parry, S., and Aitken, I. (1977). Local immunity in the respiratory tract of the
            disease virus as a vaccine vector. J. Virol. 75, 11868–11873. https://doi.  chicken. II The secretory immune response to Newcastle disease virus
            org/10.1128/JVI.75.23.11868-11873.2001                and the role of IgA. Vet. Microbiol. 2, 143–165.
          Nayak, B., Rout, S.N., Kumar, S., Khalil, M.S., Fouda, M.M., Ahmed,   Pearson, J.E., Senne, D.A., Alexander, D.J., Taylor, W.D., Peterson, L.A., and
            L.E., Earhart, K.C., Perez, D.R., Collins, P.L., and Samal, S.K. (2009).   Russell, P.H. (1987). Characterization of Newcastle disease virus (avian
            Immunization of chickens with Newcastle disease virus expressing H5   paramyxovirus-1) isolated from pigeons. Avian Dis. 31, 105–111.
            hemagglutinin protects against highly pathogenic H5N1 avian influenza   Pedersen, J.C., Senne, D.A., Woolcock, P.R., Kinde, H., King, D.J., Wise,
            viruses. PLOS ONE  4, e6509. https://doi.org/10.1371/journal.  M.G., Panigrahy, B., and Seal, B.S. (2004). Phylogenetic relationships
            pone.0006509                                          among  virulent  Newcastle  disease  virus  isolates  from  the  2002-2003
          Nishio, M., Ohtsuka, J., Tsurudome, M., Nosaka, T., and Kolakofsky, D.   outbreak in California and other recent outbreaks in North America. J.
            (2008). Human parainfluenza virus type 2 V protein inhibits genome   Clin. Microbiol. 42, 2329–2334.
            replication by binding to the L protein: possible role in promoting viral   Peeples, M.E. (1988). Differential detergent treatment allows
            fitness. J. Virol. 82, 6130–6138. https://doi.org/10.1128/JVI.02635-07  immunofluorescent localization of the Newcastle disease virus matrix
          Ochi, Y., and Hashimoto, K. (1929). Uber eine neue Geflugelseuche in   protein within the nucleus of infected cells. Virology 162, 255–259.
            Korea, 6th Rept. Govt. Inst. Vet. Res. (Chosen), 16.  Peeters, B.P., de Leeuw, O.S., Koch, G., and Gielkens, A.L. (1999). Rescue
          Ogino, T., and Banerjee, A.K. (2007). Unconventional mechanism of   of Newcastle disease virus from cloned cDNA: evidence that cleavability
            mRNA capping by the RNA-dependent RNA polymerase of vesicular   of the fusion protein is a major determinant for virulence. J. Virol. 73,
            stomatitis virus. Mol. Cell 25, 85–97.                5001–5009.
          Oh, S.W., Onomoto, K., Wakimoto, M., Onoguchi, K., Ishidate, F., Fujiwara,   Pegg, C.L., Hoogland, C., and Gorman, J.J. (2017). Site-specific glycosylation
            T., Yoneyama, M., Kato, H., and Fujita, T. (2016). Leader-containing   of the Newcastle disease virus haemagglutinin-neuraminidase. Glycoconj.
            uncapped viral transcript activates RIG-I in antiviral stress granules.   J. 34, 181–197. https://doi.org/10.1007/s10719-016-9750-7
            PLOS  Pathog.  12,  e1005444.  https://doi.org/10.1371/journal.  Perozo, F., Merino, R., Afonso, C.L., Villegas, P., and Calderon, N. (2008).
            ppat.1005444                                          Biological and phylogenetic characterization of virulent Newcastle
          OIE, 2012. Newcastle disease, Biological Standards Commission, Manual   disease virus circulating in Mexico. Avian Dis. 52, 472–479. https://doi.
            of diagnostic tests and vaccines for terrestrial animals: mammals, birds   org/10.1637/8276-022908-Reg.1
            and bees, 7th ed. World Organization for Animal Health, Paris, France,   Pitt, J.J., Da Silva, E., and Gorman, J.J. (2000). Determination of the
            pp.555–574.                                           disulfide bond arrangement of Newcastle disease virus hemagglutinin
          Paldurai, A., Kumar, S., Nayak, B., and Samal, S.K. (2010). Complete   neuraminidase. Correlation with a beta-sheet propeller structural fold
            genome sequence of highly virulent neurotropic Newcastle disease virus   predicted for paramyxoviridae attachment proteins. J. Biol. Chem. 275,
            strain Texas GB. Virus Genes  41, 67–72. https://doi.org/10.1007/  6469–6478.
            s11262-010-0486-3                                   Poch, O., Blumberg, B.M., Bougueleret, L., and Tordo, N. (1990).
          Paldurai, A., Xiao, S., Kim, S.H., Kumar, S., Nayak, B., Samal, S., Collins,   Sequence comparison of five polymerases (L proteins) of
            P.L., and Samal, S.K. (2014a). Effects of naturally occurring six- and   unsegmented negative-strand RNA viruses: theoretical assignment
            twelve-nucleotide inserts on Newcastle disease virus replication and   of functional domains. J. Gen. Virol.  71, 1153–1162. https://doi.
            pathogenesis. PLOS ONE  9, e103951. https://doi.org/10.1371/  org/10.1099/0022-1317-71-5-1153
            journal.pone.0103951                                Pomeroy, L.W., Bjørnstad, O.N., and Holmes, E.C. (2008). The evolutionary
          Paldurai, A., Kim, S.H., Nayak, B., Xiao, S., Shive, H., Collins, P.L., and   and epidemiological dynamics of the paramyxoviridae. J. Mol. Evol. 66,
            Samal, S.K. (2014b). Evaluation of the contributions of individual viral   98–106. https://doi.org/10.1007/s00239-007-9040-x
            genes to Newcastle disease virus virulence and pathogenesis. J. Virol. 88,   Porotto, M., Fornabaio, M., Greengard, O., Murrell, M.T., Kellogg, G.E.,
            8579–8596. https://doi.org/10.1128/JVI.00666-14       and Moscona, A. (2006). Paramyxovirus receptor-binding molecules:
          Palya, V., Kiss, I., Tatár-Kis, T., Mató, T., Felföldi, B., and Gardin, Y. (2012).   engagement of one site on the hemagglutinin-neuraminidase protein
            Advancement in vaccination against Newcastle disease: recombinant   modulates activity at the second site. J. Virol. 80, 1204–1213.
            HVT NDV provides high clinical protection and reduces challenge virus   Porotto, M., Salah, Z., DeVito, I., Talekar, A., Palmer, S.G., Xu, R., Wilson, I.A.,
            shedding with the absence of vaccine reactions. Avian Dis. 56, 282–287.   and Moscona, A. (2012). The second receptor binding site of the globular
            https://doi.org/10.1637/9935-091511-Reg.1             head of the Newcastle disease virus hemagglutinin-neuraminidase
          Panda, A., Huang, Z., Elankumaran, S., Rockemann, D.D., and Samal, S.K.   activates the stalk of multiple paramyxovirus receptor binding proteins
            (2004a). Role of fusion protein cleavage site in the virulence of Newcastle   to trigger fusion. J. Virol.  86, 5730–5741. https://doi.org/10.1128/
            disease virus. Microb. Pathog. 36, 1–10.              JVI.06793-11
          Panda, A., Elankumaran, S., Krishnamurthy, S., Huang, Z., and   Powell, J.R., Aitken, I.D., and Survashe, B.D. (1979). The response of the
            Samal, S.K. (2004b). Loss of N-linked glycosylation from the   Harderian gland of the fowl to antigen given by the ocular route. II.
            hemagglutinin-neuraminidase protein alters virulence of Newcastle   Antibody production. Avian Pathol. 8, 363–373.
            disease virus. J. Virol. 78, 4965–4975.             Pühler, F., Willuda, J., Puhlmann, J., Mumberg, D., Römer-Oberdörfer, A.,
          Panigrahy, B., Senne, D.A., Pearson, J.E., Mixson, M.A., and Cassidy, D.R.   and Beier, R. (2008). Generation of a recombinant oncolytic Newcastle
            (1993). Occurrence of velogenic viscerotropic Newcastle disease in pet   disease virus and expression of a full IgG antibody from two transgenes.
            and exotic birds in 1991. Avian Dis. 37, 254–258.     Gene Ther. 15, 371–383. https://doi.org/10.1038/sj.gt.3303095
          Pantua, H., McGinnes, L.W., Leszyk, J., and Morrison, T.G. (2005).   Puhlmann, J., Puehler, F., Mumberg, D., Boukamp, P., and Beier, R. (2010).
            Characterization of an alternate form of Newcastle disease virus fusion   Rac1 is required for oncolytic NDV replication in human cancer
            protein. J. Virol. 79, 11660–11670.                   cells and establishes a link between tumorigenesis and sensitivity to
                                                                  oncolytic virus. Oncogene  29, 2205–2216. https://doi.org/10.1038/
                                                                  onc.2009.507
   81   82   83   84   85   86   87   88   89   90   91