Page 87 - Avian Virology: Current Research and Future Trends
P. 87
80 | Samal
Qin, Z., Sun, L., Ma, B., Cui, Z., Zhu, Y., Kitamura, Y., and Liu, W. (2008). disease virus elicits a strong innate immune response in chickens. J. Gen.
F gene recombination between genotype II and VII Newcastle disease Virol. 92, 931–939.
virus. Virus Res. 131, 299–303. Russell, P.H., and Alexander, D.J. (1983). Antigenic variation of Newcastle
Qiu, X., Sun, Q., Wu, S., Dung, L., Hu, S., Mang, C., Ulu, Y., and Liu, X. disease virus strains detected by monoclonal antibodies. Arch. Virol. 75,
(2011). Entire genome sequence analysis of genotype IX Newcastle 243–253.
disease virus reveals their early-genotype phylogenetic position and Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method
recent-genotype genome six. Virol. J. 8, 117–128. for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.
Qiu, X., Fu, Q., Meng, C., Yu, S., Zhan, Y., Dong, L., Ren, T., Sun, Y., Tan, L., https://doi.org/10.1093/oxfordjournals.molbev.a040454
Song, C., et al. (2016a). Kinetic analysis of RNA editing of Newcastle Sakaguchi, M., Nakamura, H., Sonoda, K., Okamura, H., Yokogawa, K.,
disease virus P gene in the early period of infection. Acta Virol. 60, 71–77. Matsuo, K., and Hira, K. (1998). Protection of chickens with or without
Qiu, X., Zhan, Y., Meng, C., Wang, J., Dong, L., Sun, Y., Tan, L., Song, C., maternal antibodies against both Marek’s and Newcastle diseases by
Yu, S., and Ding, C. (2016b). Identification and functional analysis of one-time vaccination with recombinant vaccine of Marek’s disease virus
phosphorylation in Newcastle disease virus phosphoprotein. Arch. Virol. type 1. Vaccine 16, 472–479.
161, 2103–2116. https://doi.org/10.1007/s00705-016-2884-x Sakaguchi, T., Toyoda, T., Gotoh, B., Inocencio, N.M., Kuma, K., Miyata, T., and
Qiu, X., Fu, Q., Meng, C., Yu, S., Zhan, Y., Dong, L., Song, C., Sun, Y., Tan, Nagai, Y. (1989). Newcastle disease virus evolution. I. Multiple lineages
L., Hu, S., et al. (2016c). Newcastle disease virus V protein targets defined by sequence variability of the hemagglutinin-neuraminidase
phosphorylated STAT1 to block IFN-I signaling. PLOS ONE 11, gene. Virology 169, 260–272.
e0148560. https://doi.org/10.1371/journal.pone.0148560 Samal, S., Kumar, S., Khattar, S.K., and Samal, S.K. (2011). A single amino
Ramey, A.M., Reeves, A.B., Ogawa, H., Ip, H.S., Imai, K., Bui, V.N., acid change, Q114R, in the cleavage-site sequence of Newcastle disease
Yamaguchi, E., Silko, N.Y., and Afonso, C.L. (2013). Genetic diversity virus fusion protein attenuates viral replication and pathogenicity. J. Gen.
and mutation of avian paramyxovirus serotype 1 (Newcastle disease Virol. 92, 2333–2338.
virus) in wild birds and evidence for intercontinental spread. Arch. Virol. Samal, S., Khattar, S.K., Kumar, S., Collins, P.L., and Samal, S.K. (2012).
158, 2495–2503. https://doi.org/10.1007/s00705-013-1761-0 Coordinate deletion of N-glycans from the heptad repeats of the fusion
Rasoli, M., Yeap, S.K., Tan, S.W., Moeini, H., Ideris, A., Bejo, M.H., Alitheen, F protein of Newcastle disease virus yields a hyperfusogenic virus
N.B., Kaiser, P., and Omar, A.R. (2014). Alteration in lymphocyte with increased replication, virulence, and immunogenicity. J. Virol. 86,
responses, cytokine and chemokine profiles in chickens infected with 2501–2511. https://doi.org/10.1128/JVI.06380-11
genotype VII and VIII velogenic Newcastle disease virus. Comp. Samal, S., Khattar, S.K., Paldurai, A., Palaniyandi, S., Zhu, X., Collins,
Immunol. Microbiol. Infect. Dis. 37, 11–21. https://doi.org/10.1016/j. P.L., and Samal, S.K. (2013). Mutations in the cytoplasmic domain
cimid.2013.10.003 of the Newcastle disease virus fusion protein confer hyperfusogenic
Ratanasethakul, C. (1989). Disease problems of importance in Thai village phenotypes modulating viral replication and pathogenicity. J. Virol. 87,
poultry. Proceedings, International Seminar on Animal Health and 10083-10093.
Production Services for Village Livestock, , 2–9 August 1989 (Thailand, Samal, S.K., and Collins, P.L. (1996). RNA replication by a respiratory
Khon Kaen), pp. 113–115. syncytial virus RNA analog does not obey the rule of six and retains a
Ravindra, P.V., Tiwari, A.K., Ratta, B., Chaturvedi, U., Palia, S.K., Subudhi, nonviral trinucleotide extension at the leader end. J. Virol. 70, 5075–
P.K., Kumar, R., Sharma, B., Rai, A., and Chauhan, R.S. (2008). 5082.
Induction of apoptosis in Vero cells by Newcastle disease virus requires Samuel, A., Nayak, B., Paldurai, A., Xiao, S., Aplogan, G.L., Awoume, K.A.,
viral replication, de-novo protein synthesis and caspase activation. Virus Webby, R.J., Ducatez, M.F., Collins, P.L., and Samal, S.K. (2013).
Res. 133, 285–290. https://doi.org/10.1016/j.virusres.2008.01.010 Phylogenetic and pathotypic characterization of Newcastle disease
Ray, G., Schmitt, P.T., and Schmitt, A.P. (2016). C-Terminal DxD-containing viruses circulating in west Africa and efficacy of a current vaccine. J. Clin.
sequences within paramyxovirus nucleocapsid proteins determine Microbiol. 51, 771–781. https://doi.org/10.1128/JCM.02750-12
matrix protein compatibility and can direct foreign proteins into Samuel, A.S., Subbiah, M., Shive, H., Collins, P.L., and Samal, S.K. (2011).
budding particles. J. Virol. 90, 3650–3660. https://doi.org/10.1128/ Experimental infection of hamsters with avian paramyxovirus serotypes
JVI.02673-15 1 to 9. Vet. Res. 42, 38. https://doi.org/10.1186/1297-9716-42-38
Reagan, R.L., Lillie, M.G., Hauser, J.E., and Brueckner, A. (1947). Sánchez-Felipe, L., Villar, E., and Muñoz-Barroso, I. (2012). α2-3- and α2-6-
Transmission of the virus of Newcastle disease to the Syrian hamster. N-linked sialic acids allow efficient interaction of Newcastle Disease Virus
Am. J. Vet. Res. 8, 136–138. with target cells. Glycoconj. J. 29, 539–549. https://doi.org/10.1007/
Reynolds, D.L., and Maraqa, A.D. (2000). Protective immunity against s10719-012-9431-0
Newcastle disease: the role of cell-mediated immunity. Avian Dis. 44, Sánchez-Felipe, L., Villar, E., and Muñoz-Barroso, I. (2014). Entry of
145–154. Newcastle Disease Virus into the host cell: role of acidic pH and
Rodier, E. (1928). Philippines fowl disease. Proc. Soc. Exptl. Biol. Med. 25, endocytosis. Biochim. Biophys. Acta 1838, 300–309.
781–783. San Román, K., Villar, E., and Muñoz-Barroso, I. (1999). Acidic pH
Römer-Oberdörfer, A., Mundt, E., Mebatsion, T., Buchholz, U.J., and enhancement of the fusion of Newcastle disease virus with cultured cells.
Mettenleiter, T.C. (1999). Generation of recombinant lentogenic Virology 260, 329–341. https://doi.org/10.1006/viro.1999.9841
Newcastle disease virus from cDNA. J. Gen. Virol. 80, 2987–2995. Schirrmacher, V. (2016). Fifty Years of clinical application of Newcastle
https://doi.org/10.1099/0022-1317-80-11-2987 disease virus: time to celebrate! Biomedicines 4, 16.
Römer-Oberdörfer, A., Veits, J., Werner, O., and Mettenleiter, T.C. (2006). Schirrmacher, V., Jurianz, K., Roth, C., Griesbach, A., Bonifer, R., and
Enhancement of pathogenicity of Newcastle disease virus by alteration Zawatzky, R. (1999). Tumor stimulator cell modification by infection
of specific amino acid residues in the surface glycoproteins F and HN. with Newcastle disease virus: analysis of effects and mechanism in
Avian Dis. 50, 259–263. https://doi.org/10.1637/7471-111505R.1 MLTC-CML cultures. Int. J. Oncol. 14, 205–215.
Römer-Oberdörfer, A., Veits, J., Helferich, D., and Mettenleiter, T.C. (2008). Schmitt, A.P., Leser, G.P., Waning, D.L., and Lamb, R.A. (2002).
Level of protection of chickens against highly pathogenic H5 avian Requirements for budding of paramyxovirus simian virus 5 virus-like
influenza virus with Newcastle disease virus based live attenuated vector particles. J. Virol. 76, 3952–3964.
vaccine depends on homology of H5 sequence between vaccine and Schmitt, P.T., Ray, G., and Schmitt, A.P. (2010). The C-terminal end of
challenge virus. Vaccine 26, 2307–2313. https://doi.org/10.1016/j. parainfluenza virus 5 NP protein is important for virus-like particle
vaccine.2008.02.061 production and M-NP protein interaction. J. Virol. 84, 12810–12823.
Rout, S.N., and Samal, S.K. (2008). The large polymerase protein is https://doi.org/10.1128/JVI.01885-10
associated with the virulence of Newcastle disease virus. J. Virol. 82, Seal, B.S., King, D.J., and Meinersmann, R.J. (2000). Molecular evolution
7828–7836. https://doi.org/10.1128/JVI.00578-08 of the Newcastle disease virus matrix protein gene and phylogenetic
Rue, C.A., Susta, L., Cornax, I., Brown, C.C., Kapczynski, D.R., Suarez, relationships among the Paramyxoviridae. Virus Res. 66, 1–11.
D.L., King, D.J., Miller, P.J., and Afonso, C.L. (2011). Virulent Newcastle