Page 87 - Avian Virology: Current Research and Future Trends
P. 87

80  |  Samal
          Qin, Z., Sun, L., Ma, B., Cui, Z., Zhu, Y., Kitamura, Y., and Liu, W. (2008).   disease virus elicits a strong innate immune response in chickens. J. Gen.
            F gene recombination between genotype II and VII Newcastle disease   Virol. 92, 931–939.
            virus. Virus Res. 131, 299–303.                     Russell, P.H., and Alexander, D.J. (1983). Antigenic variation of Newcastle
          Qiu, X., Sun, Q., Wu, S., Dung, L., Hu, S., Mang, C., Ulu, Y., and Liu, X.   disease virus strains detected by monoclonal antibodies. Arch. Virol. 75,
            (2011). Entire genome sequence analysis of genotype IX Newcastle   243–253.
            disease  virus  reveals their  early-genotype phylogenetic  position and   Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method
            recent-genotype genome six. Virol. J. 8, 117–128.      for reconstructing phylogenetic trees. Mol. Biol. Evol.  4, 406–425.
          Qiu, X., Fu, Q., Meng, C., Yu, S., Zhan, Y., Dong, L., Ren, T., Sun, Y., Tan, L.,   https://doi.org/10.1093/oxfordjournals.molbev.a040454
            Song, C., et al. (2016a). Kinetic analysis of RNA editing of Newcastle   Sakaguchi, M., Nakamura, H., Sonoda, K., Okamura, H., Yokogawa, K.,
            disease virus P gene in the early period of infection. Acta Virol. 60, 71–77.  Matsuo, K., and Hira, K. (1998). Protection of chickens with or without
          Qiu, X., Zhan, Y., Meng, C., Wang, J., Dong, L., Sun, Y., Tan, L., Song, C.,   maternal antibodies against both Marek’s and Newcastle diseases by
            Yu, S., and Ding, C. (2016b). Identification and functional analysis of   one-time vaccination with recombinant vaccine of Marek’s disease virus
            phosphorylation in Newcastle disease virus phosphoprotein. Arch. Virol.   type 1. Vaccine 16, 472–479.
            161, 2103–2116. https://doi.org/10.1007/s00705-016-2884-x  Sakaguchi, T., Toyoda, T., Gotoh, B., Inocencio, N.M., Kuma, K., Miyata, T., and
          Qiu, X., Fu, Q., Meng, C., Yu, S., Zhan, Y., Dong, L., Song, C., Sun, Y., Tan,   Nagai, Y. (1989). Newcastle disease virus evolution. I. Multiple lineages
            L., Hu, S.,  et al. (2016c). Newcastle disease virus V protein targets   defined by sequence variability of the hemagglutinin-neuraminidase
            phosphorylated STAT1 to block IFN-I signaling. PLOS ONE  11,   gene. Virology 169, 260–272.
            e0148560. https://doi.org/10.1371/journal.pone.0148560  Samal, S., Kumar, S., Khattar, S.K., and Samal, S.K. (2011). A single amino
          Ramey, A.M., Reeves, A.B., Ogawa, H., Ip, H.S., Imai, K., Bui, V.N.,   acid change, Q114R, in the cleavage-site sequence of Newcastle disease
            Yamaguchi, E., Silko, N.Y., and Afonso, C.L. (2013). Genetic diversity   virus fusion protein attenuates viral replication and pathogenicity. J. Gen.
            and  mutation  of  avian  paramyxovirus  serotype  1  (Newcastle  disease   Virol. 92, 2333–2338.
            virus) in wild birds and evidence for intercontinental spread. Arch. Virol.   Samal, S., Khattar, S.K., Kumar, S., Collins, P.L., and Samal, S.K. (2012).
            158, 2495–2503. https://doi.org/10.1007/s00705-013-1761-0  Coordinate deletion of N-glycans from the heptad repeats of the fusion
          Rasoli, M., Yeap, S.K., Tan, S.W., Moeini, H., Ideris, A., Bejo, M.H., Alitheen,   F protein of Newcastle disease virus yields a hyperfusogenic virus
            N.B., Kaiser, P., and Omar, A.R. (2014). Alteration in lymphocyte   with increased replication, virulence, and immunogenicity. J. Virol. 86,
            responses, cytokine and chemokine profiles in chickens infected with   2501–2511. https://doi.org/10.1128/JVI.06380-11
            genotype VII and VIII velogenic Newcastle disease virus. Comp.   Samal, S., Khattar, S.K., Paldurai, A., Palaniyandi, S., Zhu, X., Collins,
            Immunol. Microbiol. Infect. Dis. 37, 11–21. https://doi.org/10.1016/j.  P.L., and Samal, S.K. (2013). Mutations in the cytoplasmic domain
            cimid.2013.10.003                                      of the Newcastle disease virus fusion protein confer hyperfusogenic
          Ratanasethakul, C. (1989). Disease problems of importance in Thai village   phenotypes modulating viral replication and pathogenicity. J. Virol. 87,
            poultry. Proceedings, International Seminar on Animal Health and   10083-10093.
            Production Services for Village Livestock, , 2–9 August 1989 (Thailand,   Samal, S.K., and Collins, P.L. (1996). RNA replication by a respiratory
            Khon Kaen), pp. 113–115.                               syncytial virus RNA analog does not obey the rule of six and retains a
          Ravindra, P.V., Tiwari, A.K., Ratta, B., Chaturvedi, U., Palia, S.K., Subudhi,   nonviral trinucleotide extension at the leader end. J. Virol. 70, 5075–
            P.K., Kumar, R., Sharma, B., Rai, A., and Chauhan, R.S. (2008).   5082.
            Induction of apoptosis in Vero cells by Newcastle disease virus requires   Samuel, A., Nayak, B., Paldurai, A., Xiao, S., Aplogan, G.L., Awoume, K.A.,
            viral replication, de-novo protein synthesis and caspase activation. Virus   Webby, R.J., Ducatez, M.F., Collins, P.L., and Samal, S.K. (2013).
            Res. 133, 285–290. https://doi.org/10.1016/j.virusres.2008.01.010  Phylogenetic  and  pathotypic  characterization  of  Newcastle  disease
          Ray, G., Schmitt, P.T., and Schmitt, A.P. (2016). C-Terminal DxD-containing   viruses circulating in west Africa and efficacy of a current vaccine. J. Clin.
            sequences within paramyxovirus nucleocapsid proteins determine   Microbiol. 51, 771–781. https://doi.org/10.1128/JCM.02750-12
            matrix protein compatibility and can direct foreign proteins into   Samuel, A.S., Subbiah, M., Shive, H., Collins, P.L., and Samal, S.K. (2011).
            budding particles. J. Virol.  90, 3650–3660. https://doi.org/10.1128/  Experimental infection of hamsters with avian paramyxovirus serotypes
            JVI.02673-15                                           1 to 9. Vet. Res. 42, 38. https://doi.org/10.1186/1297-9716-42-38
          Reagan, R.L., Lillie, M.G., Hauser, J.E., and Brueckner, A. (1947).   Sánchez-Felipe, L., Villar, E., and Muñoz-Barroso, I. (2012). α2-3- and α2-6-
            Transmission of the virus of Newcastle disease to the Syrian hamster.   N-linked sialic acids allow efficient interaction of Newcastle Disease Virus
            Am. J. Vet. Res. 8, 136–138.                           with target cells. Glycoconj. J. 29, 539–549. https://doi.org/10.1007/
          Reynolds,  D.L.,  and Maraqa,  A.D.  (2000).  Protective  immunity  against   s10719-012-9431-0
            Newcastle disease: the role of cell-mediated immunity. Avian Dis. 44,   Sánchez-Felipe, L., Villar, E., and Muñoz-Barroso, I. (2014). Entry of
            145–154.                                               Newcastle  Disease  Virus  into  the  host  cell:  role  of  acidic  pH  and
          Rodier, E. (1928). Philippines fowl disease. Proc. Soc. Exptl. Biol. Med. 25,   endocytosis. Biochim. Biophys. Acta 1838, 300–309.
            781–783.                                            San Román, K., Villar, E., and Muñoz-Barroso, I. (1999).  Acidic pH
          Römer-Oberdörfer, A., Mundt, E., Mebatsion, T., Buchholz, U.J., and   enhancement of the fusion of Newcastle disease virus with cultured cells.
            Mettenleiter, T.C. (1999). Generation of recombinant lentogenic   Virology 260, 329–341. https://doi.org/10.1006/viro.1999.9841
            Newcastle disease virus from cDNA. J. Gen. Virol.  80, 2987–2995.   Schirrmacher, V. (2016). Fifty Years of clinical application of Newcastle
            https://doi.org/10.1099/0022-1317-80-11-2987           disease virus: time to celebrate! Biomedicines 4, 16.
          Römer-Oberdörfer, A., Veits, J., Werner, O., and Mettenleiter, T.C. (2006).   Schirrmacher, V., Jurianz, K., Roth, C., Griesbach, A., Bonifer, R., and
            Enhancement of pathogenicity of Newcastle disease virus by alteration   Zawatzky, R. (1999). Tumor stimulator cell modification by infection
            of specific amino acid residues in the surface glycoproteins F and HN.   with Newcastle disease virus: analysis of effects and mechanism in
            Avian Dis. 50, 259–263. https://doi.org/10.1637/7471-111505R.1  MLTC-CML cultures. Int. J. Oncol. 14, 205–215.
          Römer-Oberdörfer, A., Veits, J., Helferich, D., and Mettenleiter, T.C. (2008).   Schmitt,  A.P.,  Leser, G.P.,  Waning, D.L.,  and Lamb,  R.A.  (2002).
            Level of protection of chickens against highly pathogenic H5 avian   Requirements for budding of paramyxovirus simian virus 5 virus-like
            influenza virus with Newcastle disease virus based live attenuated vector   particles. J. Virol. 76, 3952–3964.
            vaccine  depends  on  homology  of  H5  sequence  between  vaccine  and   Schmitt,  P.T.,  Ray,  G.,  and  Schmitt,  A.P.  (2010).  The  C-terminal  end  of
            challenge virus. Vaccine  26, 2307–2313. https://doi.org/10.1016/j.  parainfluenza virus 5 NP protein is important for virus-like particle
            vaccine.2008.02.061                                    production and M-NP protein interaction. J. Virol. 84, 12810–12823.
          Rout, S.N., and Samal, S.K. (2008). The large polymerase protein is   https://doi.org/10.1128/JVI.01885-10
            associated with the virulence of Newcastle disease virus. J. Virol.  82,   Seal, B.S., King, D.J., and Meinersmann, R.J. (2000). Molecular evolution
            7828–7836. https://doi.org/10.1128/JVI.00578-08        of the Newcastle disease virus matrix protein gene and phylogenetic
          Rue, C.A., Susta, L., Cornax, I., Brown, C.C., Kapczynski, D.R., Suarez,   relationships among the Paramyxoviridae. Virus Res. 66, 1–11.
            D.L., King, D.J., Miller, P.J., and Afonso, C.L. (2011). Virulent Newcastle
   82   83   84   85   86   87   88   89   90   91   92