Page 89 - Avian Virology: Current Research and Future Trends
P. 89

82  |  Samal
            protein of human parainfluenza virus type 2 which are required for   Wise, M.G., Suarez, D.L., Seal, B.S., Pedersen, J.C., Senne, D.A., King,
            haemagglutinin-neuraminidase proteins to promote cell fusion. J. Gen.   D.J., Kapczynski, D.R., and Spackman, E. (2004b). Development of a
            Virol. 79, 279–289. https://doi.org/10.1099/0022-1317-79-2-279  real-time reverse-transcription PCR for detection of Newcastle disease
          Ujvári, D. (2006). Complete nucleotide sequence of IT-227/82, an avian   virus RNA in clinical samples. J. Clin. Microbiol. 42, 329–338.
            paramyxovirus type-1 strain of pigeons (Columba livia). Virus Genes 32,   Wobeser, G., Leighton, F.A., Norman, R., Myers, D.J., Onderka, D., Pybus,
            49–57. https://doi.org/10.1007/s11262-005-5845-0       M.J., Neufeld, J.L., Fox, G.A., and Alexander, D.J. (1993). Newcastle
          Ujvári, D., Wehmann, E., Kaleta, E.F., Werner, O., Savić, V., Nagy, E., Czifra,   disease in wild water birds in western Canada, 1990. Can. Vet. J.  34,
            G.,  and  Lomniczi,  B.  (2003).  Phylogenetic  analysis  reveals  extensive   353–359.
            evolution of avian paramyxovirus type 1 strains of pigeons (Columba   Xiao, S., Kumar, M., Yang, X., Akkoyunlu, M., Collins, P.L., Samal, S.K.,
            livia) and suggests multiple species transmission. Virus Res. 96, 63–73.  and Pal, U. (2011). A host-restricted viral vector for antigen-specific
          Umali, D.V., Ito, H., Shirota, K., Ito, T., and Katoh, H. (2015). Atypical   immunization against Lyme disease pathogen. Vaccine 29, 5294–5303.
            velogenic Newcastle disease in a commercial layer flock in Japan. Poult.   https://https://doi.org/10.1016/j.vaccine.2011.05.010
            Sci. 94, 890–897. https://doi.org/10.3382/ps/pev011  Xiao, S., Nayak, B., Samuel, A., Paldurai, A., Kanabagattebasavarajappa,
          Utterback, W.W., and Schwartz, J.H. (1973). Epizootiology of velogenic   M., Prajitno, T.Y., Bharoto, E.E., Collins, P.L., and Samal, S.K. (2012).
            viscerotropic Newcastle disease in southern California, 1971–1973. J.   Generation by reverse genetics of an effective, stable, live-attenuated
            Am. Vet. Med. Assoc. 163, 1080–1088.                   Newcastle disease virus  vaccine based on a  currently  circulating,
          Vigil, A., Park, M.S., Martinez, O., Chua, M.A., Xiao, S., Cros, J.F.,   highly virulent Indonesian strain. PLOS ONE 7, e52751. https://doi.
            Martínez-Sobrido, L., Woo, S.L., and García-Sastre, A. (2007). Use of   org/10.1371/journal.pone.0052751
            reverse genetics to enhance the oncolytic properties of Newcastle disease   Yabukarski, F., Lawrence, P., Tarbouriech, N., Bourhis, J.M., Delaforge, E.,
            virus. Cancer Res. 67, 8285–8292.                      Jensen, M.R., Ruigrok, R.W., Blackledge, M., Volchkov, V., and Jamin, M.
          Vindevogel, H., and Duchatel, J.P. (1988). Panzootic Newcastle disease virus   (2014). Structure of Nipah virus unassembled nucleoprotein in complex
            in pigeons. In Newcastle Disease, D.J. Alexander, ed. (Kluwer Academic   with its viral chaperone. Nat. Struct. Mol. Biol. 21, 754–759. https://doi.
            Publishers, Boston, MA), pp. 184–196.                  org/10.1038/nsmb.2868
          Wakamatsu, N., King, D.J., Seal, B.S., Peeters, B.P., and Brown, C.C. (2006).   Yan, Y., and Samal, S.K. (2008). Role of intergenic sequences in Newcastle
            The effect on pathogenesis of Newcastle disease virus LaSota strain from   disease virus RNA transcription and pathogenesis. J. Virol. 82, 1323–
            a mutation of the fusion cleavage site to a virulent sequence. Avian Dis.   1331.
            50, 483–488. https://doi.org/10.1637/7515-020706R.1  Yan, Y., Rout, S.N., Kim, S.H., and Samal, S.K. (2009). Role of untranslated
          Wang, J., Cong, Y., Yin, R., Feng, N., Yang, S., Xia, X., Xiao, Y., Wang, W.,   regions of the hemagglutinin-neuraminidase gene in replication and
            Liu, X., Hu, S., et al. (2015). Generation and evaluation of a recombinant   pathogenicity of Newcastle disease virus. J. Virol.  83, 5943–5946.
            genotype VII Newcastle disease virus expressing VP3 protein of Goose   https://doi.org/10.1128/JVI.00188-09
            parvovirus as a bivalent vaccine in goslings. Virus Res.  203, 77–83.   Yin, H.S., Wen, X., Paterson, R.G., Lamb, R.A., and Jardetzky, T.S. (2006).
            https://doi.org/10.1016/j.virusres.2015.04.006         Structure of the parainfluenza virus 5 F protein in its metastable,
          Wang, Z., Liu, H., Xu, J., Bao, J., Zheng, D., Sun, C., Wei, R., Song, C., and   prefusion conformation. Nature 439, 38–44.
            Chen, J. (2006). Genotyping of Newcastle disease viruses isolated from   Yu, L., Wang, Z., Jiang, Y., Chang, L., and Kwang, J. (2001). Characterization
            2002 to 2004 in China. Ann. N. Y. Acad. Sci. 1081, 228–239.  of newly emerging Newcastle disease virus isolates from the People’s
          Waning, D.L., Russell, C.J., Jardetzky, T.S., and Lamb, R.A. (2004).   Republic of China and Taiwan. J. Clin. Microbiol. 39, 3512–3519.
            Activation of a paramyxovirus fusion protein is modulated by inside-out   Yu, X.H., Cheng, J.L., Xue, J., Jin, J.H., Song, Y., Zhao, J., and Zhang,
            signaling from the cytoplasmic tail. Proc. Natl. Acad. Sci. U.S.A. 101,   G.Z. (2017). Roles of the polymerase-associated protein genes in
            9217–9222. https://doi.org/10.1073/pnas.0403339101     Newcastle disease virus virulence. Front. Microbiol. 8, 161. https://doi.
          Washburn, B., and Schirrmacher, V. (2002). Human tumor cell infection by   org/10.3389/fmicb.2017.00161
            Newcastle Disease Virus leads to upregulation of HLA and cell adhesion   Yuan, P., Paterson, R.G., Leser, G.P., Lamb, R.A., and Jardetzky, T.S.
            molecules and to induction of interferons,  chemokines and finally   (2012). Structure of the Ulster  strain Newcastle disease virus
            apoptosis. Int. J. Oncol. 21, 85–93.                   hemagglutinin-neuraminidase reveals auto-inhibitory interactions
          Webb, S., Nagy, T., Moseley, H., Fried, M., and Dutch, R. (2017). Hendra   associated with low virulence. PLOS Pathog. 8, e1002855. https://doi.
            virus fusion protein transmembrane domain contributes to pre-fusion   org/10.1371/journal.ppat.1002855
            protein stability. J. Biol. Chem.  292, 5685–5694. https://doi.  Zaitsev, V., von Itzstein, M., Groves, D., Kiefel, M., Takimoto, T., Portner,
            org/10.1074/jbc.M117.777235                            A., and Taylor, G. (2004). Second sialic acid binding site in Newcastle
          Weise, C., Erbar, S., Lamp, B., Vogt, C., Diederich, S., and Maisner, A. (2010).   disease virus hemagglutinin-neuraminidase: implications for fusion. J.
            Tyrosine residues in the cytoplasmic domains affect sorting and fusion   Virol. 78, 3733–3741.
            activity of the Nipah virus glycoproteins in polarized epithelial cells. J.   Zamarin, D., and Palese, P. (2012). Oncolytic Newcastle disease virus for
            Virol. 84, 7634–7641. https://doi.org/10.1128/JVI.02576-09  cancer therapy: old challenges and new directions. Future Microbiol. 7,
          Welch, B.D., Yuan, P., Bose, S., Kors, C.A., Lamb, R.A., and Jardetzky,   347–367. https://doi.org/10.2217/fmb.12.4
            T.S. (2013). Structure of the parainfluenza virus 5 (PIV5)   Zamarin, D., Martínez-Sobrido, L., Kelly, K., Mansour, M., Sheng, G., Vigil,
            hemagglutinin-neuraminidase (HN) ectodomain. PLOS Pathog.  9,   A., García-Sastre, A., Palese, P., and Fong, Y. (2009). Enhancement of
            e1003534. https://doi.org/10.1371/journal.ppat.1003534  oncolytic properties of recombinant Newcastle disease virus through
          Welsh, R.M. (1977). Host cell modification of lymphocytic choriomeningitis   antagonism of cellular innate immune responses. Mol. Ther. 17, 697–706.
            virus and Newcastle disease virus altering viral inactivation by human   https://doi.org/10.1038/mt.2008.286
            complement. J. Immunol. 118, 348–354.               Zamarin, D., Holmgaard, R.B., Subudhi, S.K., Park, J.S., Mansour, M., Palese,
          Wen, G., Hu, X., Zhao, K., Wang, H., Zhang, Z., Zhang, T., Yang, J., Luo, Q.,   P., Merghoub, T., Wolchok, J.D., and Allison, J.P. (2014). Localized
            Zhang, R., Pan, Z., et al. (2016). Molecular basis for the thermostability   oncolytic virotherapy overcomes systemic tumor resistance to immune
            of Newcastle disease virus. Sci. Rep. 6, 22492. https://doi.org/10.1038/  checkpoint blockade immunotherapy. Sci. Transl. Med.  6, 226ra32.
            srep22492                                              https://doi.org/10.1126/scitranslmed.3008095
          Westbury, H. (2001). Newcastle disease virus: an evolving pathogen? Avian   Zamarin, D., Holmgaard, R.B., Ricca, J., Plitt, T., Palese, P., Sharma, P.,
            Pathol. 30, 5–11. https://doi.org/10.1080/03079450020023131  Merghoub,  T.,  Wolchok,  J.D.,  and  Allison,  J.P.  (2017).  Intratumoral
          Wise, M.G., Sellers, H.S., Alvarez, R., and Seal, B.S. (2004a). RNA-dependent   modulation of the inducible co-stimulator ICOS by recombinant
            RNA polymerase gene analysis of worldwide Newcastle disease virus   oncolytic  virus  promotes  systemic  anti-tumour  immunity.  Nat.
            isolates representing different virulence types and their phylogenetic   Commun. 8, 14340. https://doi.org/10.1038/ncomms14340
            relationship with other members of the paramyxoviridae. Virus Res. 104,   Zanetti, F., Berinstein, A., and Carrillo, E. (2008). Effect of host selective
            71–80. https://doi.org/10.1016/j.virusres.2004.01.034  pressure on Newcastle disease virus virulence. Microb. Pathog.  44,
                                                                   135–140.
   84   85   86   87   88   89   90   91   92   93   94