Page 82 - steps 4b 02.pdf
P. 82
II Answers 4b II II II II II II II II II II 1
Possible answers to open questions are not given. Where rectangles 3 and 4: new rectangle will have area 6 + 21
2
applicable, check that children have given appropriate = 27cm .
rectangles 4 and 5: new rectangle will have area 21 + 12
answers.
= 33cm.
rectangles 1 and 6: new rectangle will have area 12 + 8
ORM 1 2
1and2 = 20cm .
rectangles 1 and 3 and 6: new rectangle will have area
2
4 4 8 12 16 12 + 6 + 8 = 26 cm •
3 3 6 q 12 rectangles 2 and 4 and 6: new rectangle will have area
2
20+21 +8=4qcm •
2 2 4 6 8
1 1 2 3 4 ORMS
2
x 1 2 3 4 Shape 1: area 5 cm , perimeter 12 cm
2
Shape 2: area 6cm , perimeter 14cm
2
3 The set of factors of 12 are: 1, 2, 3, 4, 6 and 12. Shape 3: area 7 cm , perimeter 16 cm
2
Shape 4: area 8cm , perimeter 18cm
4 a 3 x 8 = 24 2
4 x 6 = 24 2 Shape 5: area q cm , perimeter 20 cm
2
3, 4, 6 and 8 are factors of 24. 3 Shape 10: area (10 + 4)cm = 14cm2
The set of factors of 24 are I , 2, 3, 4, 6, 8, 12, 24.
4 Perimeter increases by 2 each time.
b 4 x q = 36
6 x 6 = 36 5 Perimeter is 2s + 10.
4, 6, and q are factors of 36.
The set of factors of 36 are: 1, 2, 3, 4, 6, q, 12, 18, 36. 6 Perimeter of the 10th shape is 30 cm.
ORM2 ORM6
1 Middle numbers for hives A and B: 18, 42, 36, 24. 1 a 28cm; b 32cm; c 36cm
Out numbers from hives A and B: 36, 84, 72, 48. 2 Sides 3 cm: total length of edges: 36 cm
Sides 4 cm: total length of edges : 48 cm
Sides 5 cm: total length of edges: 60 cm
3 Multiply the length of 1 edge by 12.
ORM7
1 jump 1 , right qo 0
jump 2, right 270°
jump 1, right 270°
3 Open jump 1, right qo 0
jump3
ORM3
1 2 2 Open
3 Open
10 10
q 36 100 q 1qE
ORMS
8 18 50 8 24 88 ci8
1 a 30°
7 12 64 25 7 12 44 4q
b 60°
6 q 32 20 6 18 8 50 22 q9 28 c qo 0
5 16 6 16 81 10 5 q 6 25 11 4q 14
d 120°
4 8 4 8 27 5 4 10 6 4 10 8 14 7
-- - e 30°
3 4 q 4 25 3 4q 4 q 4 3 5 3 3 5 4 7 161 4
-- f 60°
2 2 3 2 5 2 7 2 3 2 2 2 2 2 2 2 2 13 2
-- -
1 I 1 I 1 1 1 1 1 1 I 1 1 1 1 1 1 1 I ORMQ
1 4 q 16 25 36 4q 64 81 I 00 10 18 24 50 88 q9 16Q IQ6
degrees 3 set squares 4 set squares
3 a none 180° qoo + S0° + 30°, S0° + S0° + S0° S0° + S0° + 30° + 30°
b odd: I, 4, q, 16, 25, 36, 4q, 64, 81 , I 00 21 oo qoo + soo + soo I qoo + qoo + 30° qoo + soo +30° + 30° I
so· + so• + so• + 30°
4 a even: IO, 18, 24, 50, 88, q5 240° qoo + S0° + S0° + 30°,
b odd: J6q, 1%
qo + qo• + 30° + 30°,
0
c square numbers
so + so + so· + so 0
0
0
0
5odd: 1, 2,4, 5,8, 10, 20,40,50,80,200,400 270° qo• + qo + S0° + 30°
qo· + so + so + so•
0
0
ORM4 300° qo• + qo + qo + 30°,
0
0
0
2 Fit together: qo• + qo• + so + so 0
0
rectangles 1 and 3: new rectangle will have area 12 + 6 = 330° qo + Q0° + Q0° + S0°
2
18cm •
rectangles 2 and 5: new rectangle will have area 20 + 12 2 Open
2
= 32cm •
ORM 10
Game
C HarperCollinsPub/lshers Ltd 1997 STEPS 4b Differentiation Pack