Page 12 - e-modul spldv
P. 12

C. C.    Garis k dan l sejajar jika
                                   is
                                            se

                                       da
                                                    jika

                                         n

                                                  r
                                  a
                                                ja
                                   r
                                G
                                              ja
                                      k
                                           l
                                          =             da n            ≠           .   Atau
                                   =     dan    ≠    . Atau
                                            2
                                     1
                                − −     1  =  −     2   da n     1    1  ≠ ≠     2    2
                                     = −  dan
                                     1      2      1     2
                                                   1
                                                        2
                                            2
                                     1
                                                      1     1     1     1    1
                                                      1
                                                                  1
                                                           1
                                              role
                                 e
                                                                 ≠
                                                 h
                                                             n
                                                           da
                                        a
                                S
                                Sehingga diperoleh    = =     dan   ≠
                                          dipe
                                  hingg
                                                      2     2     2     2    2
                                                      2
                                                                  2
                                                           2
                                             1
                                        1
                                J
                                    ,
                                             ≠
                                Jadi,       1  = =     1  ≠     1    1         (terbukti)
                                 a
                                                              (te
                                                                 rbukti)
                                  di
                                        2     2     2    2
                                        2
                                             2
                   contoh C:
                   c on toh   C :
                   Te ntukan himpunan se les a ian da ri      +      =  2   da n  2     + 2     =  3   de n g a n m e ngg un a ka n
                   Tentukan himpunan selesaian dari    +    = 2 dan 2   + 2   = 3 dengan menggunakan
                   metode grafik!
                   metode  gra fik!
                       +      =  2   ................................ .....     g a ris  k

                      +    = 2  .....................................  garis k
                   2     + 2     =  3     ................................     g a ris  l
                   2   + 2   = 3  ................................  garis l
                   Periksa terlebih dahulu apakah dua persamaan linier dua variabel tersebut memiliki
                   P e riksa  ter lebih da hulu a pa ka h dua  p e rsa ma a n li nier  dua  va ria be l t e rse but  memil iki
                                     k !
                   selesaian atau tidak !
                               u ti
                              a
                         ian a
                                  da
                     lesa
                             t
                   se
                   1 1  =  1 1  ≠  2 2                  1  = =     1  ≠     1    1
                                                 1
                                            1
                     = ≠
                                                 ≠
                   2 2  2 2  3 3            2     2     2    2
                                                 2
                                            2
                                       

                                       +
                                              2
                                                                        
                                                                           0
                                                                  
                                           
                                                                        =
                                           =
                                                      a
                                                    d

                                                            bu
                                                               -
                                                       p sum
                                                                  ji
                                                                   ka

                                                  ha
                                                ter

                                ga
                   Titi

                                                                            , sehingga
                       k potong
                   Titik potong garis    +    = 2 terhadap sumbu-    jika    = 0, sehingga
                                  ris

                            +  0  =  2                         2  2
                           + 0 = 2
                              
                              =
                                2




                                      = 2                      0  0





                                                                             
                                            a
                                             ris
                                                                                   
                                                                  p sum

                                                                               ka
                                                                             ji
                                                      
                      lanjutn
                                                  +
                    e


                                                                 a
                                                  
                                                      =


                                                           ter
                                                                          -
                                                         2
                             a
                   S
                                                                        bu
                                ti
                                  k potong
                   Selanjutnya titik potong garis    +    = 2 terhadap sumbu-    jika    = 0, sehingga
                               ti
                                                             ha

                                                                                       , sehin
                                           g
                                                                                    =
                                                                                      0
                                                                                                a
                                                               d
                            y
                                                                                              gg
                        0 +      =  2                 0  0     2  2
                        0 +    = 2
                                     = 2
                                              =  2             2  2   0  0

                                                             (
                                                                2
                                                                ,
                                                              0
                                                                           )
                                                                        2
                                                                          ,
                                                                          0
                                                                  )
                                                                       (
                                                         a
                                                                   da
                                         ro
                         n de
                   Dengan demikian, diperoleh dua titik yakni (0,2) dan (2,0)
                                kian, dipe
                                                                     n
                             mi
                                                          kni
                   De
                                                        y
                                                      k
                      n
                                                    ti
                       g
                                                   ti
                                           leh dua
                        a


                                                                     ji
                                                                      ka
                                                                             0

                                                               bu

                                                                     
                                                                           =
                                                                  -
                                                                           
                                                                               , sehingga
                                              =
                                              
                                          2
                                                3
                                                     ha
                                                  ter

                       k potong
                                  ris
                                ga


                                        +
                                        
                                     2
                                                        a
                                                       d
                   Titi
                   Titik potong garis 2   + 2   = 3 terhadap sumbu-    jika    = 0, sehingga
                                                         p sum
                                                               3 3
                       2     +  0  =  3            
                       2   + 0 = 3
                                                               2 2
                                3 3
                              =
                              
                                   =
                                2 2                            0  0
                   S e lanjutn y a  ti ti k potong   g a ris  2     +  2     =  3   ter ha d a p sum bu -        ji ka       =  0 , sehin gg a
                   Selanjutnya titik potong garis 2   + 2   = 3 terhadap sumbu-    jika    = 0, sehingga
                                                               3 3
                       0 +  2     =  3                0  0
                       0 + 2   = 3
                                                               2 2
                               =
                                  =  3 3              3 3
                                2 2
                                                               0  0
                                                      2 2
                                                                        3 3
                                                                 3 3
                                                                           0
                                                                          ,
                                                              0
                                                                            )
                                                                  )
                                                                ,
                                                             (
                                                                       (
                      n
                       g
                   Dengan demikian, diperoleh dua titik yakni (0, ) dan ( , 0)
                   De
                                                    ti
                                                   ti
                                           leh dua
                                                      k
                                                          kni
                                                         a
                                                        y

                                kian, dipe
                                                                      n
                             mi
                        a
                         n de
                                                                   da
                                         ro
                                                                 2 2    2 2



                                                                                                                 9  9
   7   8   9   10   11   12   13   14   15   16   17