Page 66 - כתב עת מתמטי - גיליון 6
P. 66
Koichu, B., Berman, A., & Moore, M. (2007a). Heuristic solving. Cognitive Psychology, 12(3), 306-355.
literacy development and its relation to doi: 10.1016/0010-0285(80)90013-4
mathematical achievements of middle school
students. Instructional Science, 35(2), 99-139. Gick, M. L., & Holyoak, K. J. (1983). Schema induction and
doi: 10.1007/s11251-006-9004-3 analogical transfer. Cognitive Psychology, 15(1),
1-38.
Koichu, B., Berman, A., & Moore, M. (2007b). The effect
of promoting heuristic literacy on the Gick, M. L., & Holyoak, K. J. (1987). The cognitive basis of
mathematic aptitude of middle-school knowledge transfer. In S. M. Cormier & J. D.
students. International Journal of Mathematical Hagman (Eds.). Transfer of learning:
Education in Science and Technology, 38(1), Contemporary research and applications (pp.
1-17. doi: 10.1080/00207390600861161 9-46). San Diego, CA: Academic Press.
Kollar, I., Ufer, S., Reichersdorfer, E., Vogel, F., Fischer, F., Goldin, G. A. (2014). Perspectives on emotion in
& Reiss, K. (2014). Effects of collaboration mathematical engagement, learning, and problem
scripts and heuristic worked examples on the solving. In R. Pekrun, & L. Linnenbrink-Garcia
acquisition of mathematical argumentation skills (Eds.), International handbook of emotions in
of teacher students with different levels of prior education (pp. 391-414). New York: Routledge.
achievement. Learning and Instruction 32, 22-36.
doi: 10.1016/j.learninstruc.2014.01.003 Jaeggi, M., Buschkuehl, M., Jonides, J., & Perrig, W. (2008).
Improving fluid intelligence with training on
Kuo, E., Hull, M. M., Gupta, A., & Elby, A. (2013). How working memory. PNAS, 105(19), 6829-6833.
students blend conceptual and formal doi: 10.1073/pnas.0801268105
mathematical reasoning in solving physics
problems. Science Education, 97(1), 32-57. Jaeggi, S. M., Buschkuehl, M., Etienne, A., Ozdoba, C.,
doi: 10.1002/sce.21043 Perrig, W. J., & Nirkko, A. C. (2007). On how
high performers keep cool brains in situations of
LeFevre, J. A., & Dixon, P. (1986). Do written instructions cognitive overload. Cognitive, Affective &
need examples? Cognition and Instruction, 3(1), Behavioral Neuroscience, 7(2), 75-89. doi:
l-30. 10.3758/CABN.7.2.75
Lobato, J. (2003). How design experiments can inform a Kamiski, J., Sloutsky, V. M., & Heckler, A. F. (2008). The
rethinking of transfer and vice versa. advantage of abstract examples in learning math.
Educational Researcher, 32(1), 17-20. doi: Science, 320(5875), 454-455. doi: 10.1126/sci-
10.3102/0013189X032001017 ence.1154659
Mayer, R. E. (1998a). Cognitive, metacognitive, and moti- Karsenty, R. (2010). Nonprofessional mathematics tutoring
vational aspects of problem solving. Instruc- for low achieving students in secondary schools:
A case study. Educational Studies in Mathematics,
tional Science, 26(1-2), 49-63. doi: 74(1), 1-21. doi: 10.1007/s10649-009-9223-z
10.1023/A:1003088013286
Karsenty, R. (2012). Supporting mathematics teachers of at-risk
Mayer, R. E. (1998b). Thinking, problem solving, cognition (2nd students: A model of personalized professional devel-
ed.). New York: W. H. Freeman. opment. In Monograph: Mathematics teacher re-
tention (pp.93-100). Los Angeles, CA: California
Mayer, R. E. (2004). Should there be a three-strikes rule against Mathematics Project.
pure discovery learning? American Psychologist, 59(1),
14-19. doi: 10.1037/0003-066X.59.1.14 Karsenty, R. (2014). Mathematical Ability. In S. Lerman
(Ed.), Encyclopedia of mathematics education
Mevarech, Z. R., & Kramarski, B. (2003). The effects (pp. 372-375). Dordrecht: Springer.
of metacognitive training vs. worked-out examples
on students’ mathematical reasoning. British Kirschner, P., Sweller, J., & Clark, R. E. (2006). Why minimal
Journal of Educational Psychology, 73(4), 449- guidance during instruction does not work: An analysis
471. doi: 10.1348/000709903322591181 of the failure of constructivist, discovery, prob-
lem-based experiential, and inquiry-based teaching.
Mousel, S. (2006). Bad medicine: Homework or headache? Educational Psychologist, 41(2), 75-86.
Responsibility and accountability for middle level
mathematics students. Action Research Projects, Koichu, B. (2003). Junior high school students’ heuristic
51, University of Nebraska-Lincoln. behaviors in mathematical problem solving
(Doctoral dissertation). Technion, Haifa.
National Council of Teachers of Mathematics (NCTM).
(2000). Principles and standards for school Koichu, B. (2015). Towards a confluence framework of
mathematics. Reston, VA: Author. problem solving in educational contexts. In K.
Krainer & N. Vondrová (Eds.), CERME9:
National Council of Teachers of Mathematics (NCTM). Proceedings of the Ninth Congress of the
(2011). Principles and standards for school European Society for Research in Mathematics
mathematics. Reston, VA: Author. Education (pp. 2668-2674). Prague,
Czech Republic: Charles University in Prague.
Nelson, B. C. (2007). Exploring the use of individualized,
– מחקר ועיון בחינוך מתמטי6 │גיליון64