Page 66 - כתב עת מתמטי - גיליון 6
P. 66

Koichu, B., Berman, A., & Moore, M. (2007a). Heuristic                            solving. Cognitive Psychology, 12(3), 306-355.
            literacy development and its relation to                             doi: 10.1016/0010-0285(80)90013-4
            mathematical achievements of middle school
            students. Instructional Science, 35(2), 99-139.           Gick, M. L., & Holyoak, K. J. (1983). Schema induction and
            doi: 10.1007/s11251-006-9004-3                                        analogical transfer. Cognitive Psychology, 15(1),
                                                                                  1-38.
Koichu, B., Berman, A., & Moore, M. (2007b). The effect
           of promoting heuristic literacy on the                     Gick, M. L., & Holyoak, K. J. (1987). The cognitive basis of
           mathematic aptitude of middle-school                                   knowledge transfer. In S. M. Cormier & J. D.
           students. International Journal of Mathematical                        Hagman (Eds.). Transfer of learning:
            Education in Science and Technology, 38(1),                           Contemporary research and applications (pp.
           1-17. doi: 10.1080/00207390600861161                                   9-46). San Diego, CA: Academic Press.

Kollar, I., Ufer, S., Reichersdorfer, E., Vogel, F., Fischer, F.,     Goldin, G. A. (2014). Perspectives on emotion in
            & Reiss, K. (2014). Effects of collaboration                          mathematical engagement, learning, and problem
            scripts and heuristic worked examples on the                          solving. In R. Pekrun, & L. Linnenbrink-Garcia
            acquisition of mathematical argumentation skills                      (Eds.), International handbook of emotions in
            of teacher students with different levels of prior                    education (pp. 391-414). New York: Routledge.‫‏‬
            achievement. Learning and Instruction 32, 22-36.
           doi: 10.1016/j.learninstruc.2014.01.003                    Jaeggi, M., Buschkuehl, M., Jonides, J., & Perrig, W. (2008).
                                                                                  Improving fluid intelligence with training on
Kuo, E., Hull, M. M., Gupta, A., & Elby, A. (2013). How                           working memory. PNAS, 105(19), 6829-6833.
            students blend conceptual and formal                                  doi:  10.1073/pnas.0801268105
            mathematical reasoning in solving physics
            problems. Science Education, 97(1), 32-57.                Jaeggi, S. M., Buschkuehl, M., Etienne, A., Ozdoba, C.,
            doi: 10.1002/sce.21043                                                Perrig, W. J., & Nirkko, A. C. (2007). On how
                                                                                  high performers keep cool brains in situations of
LeFevre, J. A., & Dixon, P. (1986). Do written instructions                       cognitive overload. Cognitive, Affective &
            need examples? Cognition and Instruction, 3(1),                       Behavioral Neuroscience, 7(2), 75-89. doi:
            l-30.                                                                 10.3758/CABN.7.2.75

Lobato, J. (2003). How design experiments can inform a                Kamiski, J., Sloutsky, V. M., & Heckler, A. F. (2008). The
           rethinking of transfer and vice versa.                                 advantage of abstract examples in learning math.
            Educational Researcher, 32(1), 17-20. doi:                            Science, 320(5875), 454-455. doi: 10.1126/sci-
            10.3102/0013189X032001017                                             ence.1154659

Mayer, R. E. (1998a). Cognitive, metacognitive, and moti-             Karsenty, R. (2010). Nonprofessional mathematics tutoring
           vational aspects of problem solving. Instruc-                          for low achieving students in secondary schools:
                                                                                  A case study. Educational Studies in Mathematics,
              tional Science, 26(1-2), 49-63. doi:                                74(1), 1-21. doi: 10.1007/s10649-009-9223-z
              10.1023/A:1003088013286
                                                                      Karsenty, R. (2012). Supporting mathematics teachers of at-risk
Mayer, R. E. (1998b). Thinking, problem solving, cognition (2nd                     students: A model of personalized professional devel-
              ed.). New York: W. H. Freeman.                                      opment. In Monograph: Mathematics teacher re-
                                                                                  tention (pp.93-100). Los Angeles, CA: California
Mayer, R. E. (2004). Should there be a three-strikes rule against                   Mathematics Project.
              pure discovery learning? American Psychologist, 59(1),
              14-19. doi: 10.1037/0003-066X.59.1.14                   Karsenty, R. (2014). Mathematical Ability. In S. Lerman
                                                                                  (Ed.), Encyclopedia of mathematics education
Mevarech, Z. R., & Kramarski, B. (2003). The effects                              (pp. 372-375). Dordrecht: Springer.
           of metacognitive training vs. worked-out examples
            on students’ mathematical reasoning. British              Kirschner, P., Sweller, J., & Clark, R. E. (2006). Why minimal
            Journal of Educational Psychology, 73(4), 449-                          guidance during instruction does not work: An analysis
            471. doi: 10.1348/000709903322591181                                    of the failure of constructivist, discovery, prob-
                                                                                    lem-based experiential, and inquiry-based teaching.
Mousel, S. (2006). Bad medicine: Homework or headache?                              Educational Psychologist, 41(2), 75-86.
            Responsibility and accountability for middle level
            mathematics students. Action Research Projects,           Koichu, B. (2003). Junior high school students’ heuristic
            51, University of Nebraska-Lincoln.                                   behaviors in mathematical problem solving
                                                                                  (Doctoral dissertation). Technion, Haifa.
National Council of Teachers of Mathematics (NCTM).
           (2000). Principles and standards for school                Koichu, B. (2015). Towards a confluence framework of
           mathematics. Reston, VA: Author.                                       problem solving in educational contexts. In K.
                                                                                  Krainer & N. Vondrová (Eds.), CERME9:
National Council of Teachers of Mathematics (NCTM).                               Proceedings of the Ninth Congress of the
            (2011). Principles and standards for school                           European Society for Research in Mathematics
            mathematics. Reston, VA: Author.                                      Education (pp. 2668-2674). Prague,
                                                                                  Czech Republic: Charles University in Prague.
Nelson, B. C. (2007). Exploring the use of individualized,
                                                                                                   ‫ – מחקר ועיון בחינוך מתמטי‬6 ‫│גיליון‬64
   61   62   63   64   65   66   67   68   69   70   71