Page 116 - Data Science Algorithms in a Week
P. 116
100 Fred K. Gruber
Bäck, T., & Schütz, M. (1996). Intelligent mutation rate control in canonical genetic
algorithms. Foundations of Intelligent Systems, 158-167.
Bäck, T., Fogel, D., & Michalewicz, Z. (Eds.). (2000). Evolutionary computation 1:
Basic algorithms and operators (Vol. 1). CRC press.
Bazaraa, M., Sherali, H., & Shetty, C. (2013). Nonlinear programming: theory and
algorithms. John Wiley & Sons.
Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data
mining and knowledge discovery, 2(2), 121-167.
Burman, P. (1989). A comparative study of ordinary cross-validation, v-fold cross-
validation and the repeated learning-testing methods. Biometrika, 503-514.
Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing multiple
parameters for support vector machines. Machine learning, 46(1), 131-159.
Chang, C., & Lin, C. (2011). LIBSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.
Chen, X. (2003, August). Gene selection for cancer classification using bootstrapped
genetic algorithms and support vector machines. In Bioinformatics Conference, 2003.
CSB 2003. Proceedings of the 2003 IEEE (pp. 504-505). IEEE.
Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines.
University Press, 2000.
Demuth, H., Beale, M., & Hagan, M. (2008). Neural network toolbox™ 6. User’s guide,
37-55.
Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised
classification learning algorithms. Neural computation, 10(7), 1895-1923.
Duan, K., Keerthi, S. S., & Poo, A. N. (2003). Evaluation of simple performance
measures for tuning SVM hyperparameters. Neurocomputing, 51, 41-59.
Dumitrescu, D., Lazzerini, B., Jain, L. C., & Dumitrescu, A. (2000). Evolutionary
computation. CRC press.
Eiben, A. E. (2003). Multiparent recombination in evolutionary computing. Advances in
evolutionary computing, 175-192.
Fishwick, P. A., & Modjeski, R. B. (Eds.). (2012). Knowledge-based simulation:
methodology and application (Vol. 4). Springer Science & Business Media.
Frie, T. T., Cristianini, N., & Campbell, C. (1998, July). The kernel-adatron algorithm: a
fast and simple learning procedure for support vector machines. In Machine
Learning: Proceedings of the Fifteenth International Conference (ICML'98)
(pp. 188-196).
Frohlich, H., Chapelle, O., & Scholkopf, B. (2003, November). Feature selection for
support vector machines by means of genetic algorithm. In Tools with Artificial
Intelligence, 2003. Proceedings. 15th IEEE International Conference on (pp. 142-
148). IEEE.