Page 118 - Data Science Algorithms in a Week
P. 118
102 Fred K. Gruber
Quang, A., Zhang, Q., & Li, X. (2002). Evolving support vector machine parameters. In
Machine Learning and Cybernetics, 2002. Proceedings. 2002 International
Conference on (Vol. 1, pp. 548-551). IEEE.
Rabelo, L. (2001). What intelligent agent is smarter?: A comparison (MS Thesis,
Massachusetts Institute of Technology).
Rothenberg, J. (1991, December). Tutorial: artificial intelligence and simulation. In
Proceedings of the 23rd conference on Winter simulation (pp. 218-222). IEEE
Computer Society.
Ryan, K. (1999). Success measures of accelerated learning agents for e-commerce
(Doctoral dissertation, Massachusetts Institute of Technology).
Schölkopf, B. & Smola, A. (2002). Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press.
Scrucca, L. (2013). GA: a package for genetic algorithms in R. Journal of Statistical
Software, 53(4), 1-37.
Sepulveda-Sanchis, J., Camps-Valls, G., Soria-Olivas, E., Salcedo-Sanz, S., Bousono-
Calzon, C., Sanz-Romero, G., & de la Iglesia, J. M. (2002, September). Support
vector machines and genetic algorithms for detecting unstable angina. In Computers
in Cardiology, 2002 (pp. 413-416). IEEE.
Shao, X., & Cherkassky, V. (1999, July). Multi-resolution support vector machine. In
Neural Networks, 1999. IJCNN'99. International Joint Conference on (Vol. 2, pp.
1065-1070). IEEE.
Shawe-Taylor, J. & Campbell, C. (1998). Dynamically adapting kernels in support vector
machines. NIPS-98 or NeuroCOLT2 Technical Report Series NC2-TR-1998-017,
Dept. of Engineering Mathematics, Univ. of Bristol, UK.
Smits, G. & Jordaan, E. (2002). Improved SVM regression using mixtures of kernels. In
Neural Networks, 2002. IJCNN'02. Proceedings of the 2002 International Joint
Conference on (Vol. 3, pp. 2785-2790). IEEE.
Thierens, D. (2002, May). Adaptive mutation rate control schemes in genetic algorithms.
In Evolutionary Computation, 2002. CEC'02. Proceedings of the 2002 Congress on
(Vol. 1, pp. 980-985). IEEE.
Trevino, V., & Falciani, F. (2006). GALGO: an R package for multivariate variable
selection using genetic algorithms. Bioinformatics, 22(9), 1154-1156.
Tufte, E. R. (1983). The visual display of information. Conn: Graphic Press, 1983 pp.
1667-1689.
Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business
media.
Vasconcelos, J. A., Ramirez, J. A., Takahashi, R. H. C., & Saldanha, R. R. (2001).
Improvements in genetic algorithms. IEEE Transactions on magnetics, 37(5), 3414-
3417.