Page 118 - Data Science Algorithms in a Week
P. 118

102                             Fred K. Gruber

                       Quang, A., Zhang, Q., & Li, X. (2002). Evolving support vector machine parameters. In
                          Machine  Learning  and  Cybernetics,  2002.  Proceedings.  2002  International
                          Conference on (Vol. 1, pp. 548-551). IEEE.
                       Rabelo,  L.  (2001).  What  intelligent  agent  is  smarter?:  A  comparison  (MS  Thesis,
                          Massachusetts Institute of Technology).
                       Rothenberg,  J.  (1991,  December).  Tutorial:  artificial  intelligence  and  simulation.  In
                          Proceedings  of  the  23rd  conference  on  Winter  simulation  (pp.  218-222).  IEEE
                          Computer Society.
                       Ryan,  K.  (1999).  Success  measures  of  accelerated  learning  agents  for  e-commerce
                          (Doctoral dissertation, Massachusetts Institute of Technology).
                       Schölkopf,  B.  &  Smola,  A.  (2002).  Learning  with  kernels:  support  vector  machines,
                          regularization, optimization, and beyond. MIT press.
                       Scrucca,  L.  (2013).  GA:  a  package  for  genetic  algorithms  in  R.  Journal  of  Statistical
                          Software, 53(4), 1-37.
                       Sepulveda-Sanchis,  J.,  Camps-Valls,  G.,  Soria-Olivas,  E.,  Salcedo-Sanz,  S.,  Bousono-
                          Calzon,  C.,  Sanz-Romero,  G.,  &  de  la  Iglesia,  J.  M.  (2002,  September).  Support
                          vector machines and genetic algorithms for detecting unstable angina. In Computers
                          in Cardiology, 2002 (pp. 413-416). IEEE.
                       Shao,  X.,  &  Cherkassky,  V.  (1999,  July).  Multi-resolution  support  vector  machine.  In
                          Neural  Networks,  1999.  IJCNN'99.  International  Joint  Conference  on  (Vol.  2,  pp.
                          1065-1070). IEEE.
                       Shawe-Taylor, J. & Campbell, C. (1998). Dynamically adapting kernels in support vector
                          machines.  NIPS-98  or  NeuroCOLT2  Technical  Report  Series  NC2-TR-1998-017,
                          Dept. of Engineering Mathematics, Univ. of Bristol, UK.
                       Smits, G. & Jordaan, E. (2002). Improved SVM regression using mixtures of kernels. In
                          Neural  Networks,  2002.  IJCNN'02.  Proceedings  of  the  2002  International  Joint
                          Conference on (Vol. 3, pp. 2785-2790). IEEE.
                       Thierens, D. (2002, May). Adaptive mutation rate control schemes in genetic algorithms.
                          In Evolutionary Computation, 2002. CEC'02. Proceedings of the 2002 Congress on
                          (Vol. 1, pp. 980-985). IEEE.
                       Trevino,  V.,  &  Falciani,  F.  (2006).  GALGO:  an  R  package  for  multivariate  variable
                          selection using genetic algorithms. Bioinformatics, 22(9), 1154-1156.
                       Tufte, E. R. (1983).  The visual display of information. Conn: Graphic Press, 1983 pp.
                          1667-1689.
                       Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business
                          media.
                       Vasconcelos,  J.  A.,  Ramirez,  J.  A.,  Takahashi,  R.  H.  C.,  &  Saldanha,  R.  R.  (2001).
                          Improvements in genetic algorithms. IEEE Transactions on magnetics, 37(5), 3414-
                          3417.
   113   114   115   116   117   118   119   120   121   122   123