Page 117 - Data Science Algorithms in a Week
P. 117

Evolutionary Optimization of Support Vector Machines …         101

                       Golberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning
                          reading. MA: Addison-Wiley, USA.
                       Goldberg, D. E. (1991). Real-coded genetic algorithms, virtual alphabets, and blocking.
                          Complex systems, 5(2), 139-167.
                       Gruber, F. K. (2004). Evolutionary Optimization of Support Vector Machines (Doctoral
                          dissertation, University of Central Florida Orlando, Florida).
                       Herbrich, R. (2001). Learning kernel classifiers: theory and algorithms. MIT Press.
                       Holland,  J.  H.  (1975).  Adaptation  in  natural  and  artificial  systems.  An  introductory
                          analysis with application to biology, control, and artificial intelligence. Ann Arbor,
                          MI: University of Michigan Press.
                       Joachims,  T.  (2000).  Estimating  the  generalization  performance  of  a  SVM  efficiently.
                          Universität Dortmund.
                       John,  P.  (1998).  How  to  implement  SVM’s,  Microsoft  Research.  IEEE  Intelligent
                          Systems.
                       Kaufman,  L.  (1998).  Solving  the  quadratic  programming  problem  arising  in  support
                          vector  classification.  Advances  in  Kernel  Methods-Support  Vector  Learning,  147-
                          167.
                       Keerthi, S. S., & Lin, C. J. (2003). Asymptotic behaviors of support vector machines with
                          Gaussian kernel. Neural computation, 15(7), 1667-1689.
                       Kohavi,  R.  (1995,  August).  A  study  of  cross-validation  and  bootstrap  for  accuracy
                          estimation and model selection. In Ijcai (Vol. 14, No. 2, pp. 1137-1145).
                       Kuhn, M. (2008). Caret package. Journal of Statistical Software, 28(5), 1-26.
                       Law, A. M., Kelton, W. D., & Kelton, W. D. (1991). Simulation modeling and analysis
                          (Vol. 2). New York: McGraw-Hill.
                       Lendasse, A., Wertz, V., & Verleysen, M. (2003). Model selection with cross-validations
                          and bootstraps—application to time series prediction with RBFN models. Artificial
                          Neural Networks and Neural Information Processing—ICANN/ICONIP 2003, 174-
                          174.
                       Lessmann, S., Stahlbock, R., & Crone, S. F. (2006, July). Genetic algorithms for support
                          vector machine model selection. In Neural Networks, 2006. IJCNN'06. International
                          Joint Conference on (pp. 3063-3069). IEEE.
                       Martin, J., & Hirschberg, D. (1996). Small sample statistics for classification error rates
                          II: Confidence intervals and significance tests.
                       Mendenhall, W., & Sincich, T. (2016). Statistics for Engineering and the Sciences. CRC
                          Press.
                       Michalewicz,  Z.  (1996).  Introduction.  In  Genetic  Algorithms+  Data  Structures=
                          Evolution Programs (pp. 1-10). Springer Berlin Heidelberg.
                       Mitchell, M. (1998). An introduction to genetic algorithms (complex adaptive systems).
                       Murison  A.  &.  Wardell,  “gaucho:  Genetic  Algorithms  for  Understanding  Clonal
                          Heterogeneity and Ordering,” R package version 1.12.0, 2014.
   112   113   114   115   116   117   118   119   120   121   122