Page 169 - Data Science Algorithms in a Week
P. 169

The Estimation of Cutting Forces in the Turning of Inconel 718 Assisted …   153

                                       Table 2. Input parameters and experimental results

                                           Machining parameters                    Cutting forces
                         No.    Dn       s        p        vc         f        Fc       Ff      Fp
                               [mm]     [mm]    [MPa]   [m/min]   [mm/rev]     [N]     [N]      [N]
                                                       Training data set
                        1       0.25     0       50        46        0.2      1280     615      475
                        2       0.25     0       90        57       0.224     1295     545      450
                        3       0.25     1.5     50        46        0.25     1508     645      530
                        4       0.25     1.5     90        57        0.2      1150     540      425
                        5       0.25     3       90        57        0.25     1350     660      520
                        6       0.25     3       130       74        0.2      1150     545      420
                        7       0.3      0       50        57        0.2      1245     520      400
                        8       0.3      0       90        74       0.224     1265     505      410
                        9       0.3      1.5     50        57        0.25     1460     560      485
                        10      0.3      1.5     130       46       0.224     1145     565      470
                        11      0.3      3       90        74        0.25     1385     505      405
                        12      0.3      3       130       46        0.2      1055     565      435
                        13      0.4      0       50        74        0.2      1187     505      410
                        14      0.4      0       130       57        0.25     1305     520      440
                        15      0.4      1.5     90        46        0.2      1160     560      435
                        16      0.4      1.5     130       57       0.224     1275     530      465
                        17      0.4      3       90        46        0.25     1375     560      470
                        18      0.4      3       130       57        0.2      1250     545      430
                                                        Testing data set
                        1       0.25     0       130       74        0.25     1370     570      470
                        2       0.25     1.5     130       74       0.224     1235     520      440
                        3       0.25     3       50        46       0.224     1400     630      510
                        4       0.3      0       130       46        0.25     1390     565      485
                        5       0.3      1.5     90        74        0.2      1190     475      415
                        6       0.3      3       50        57       0.224     1320     555      465
                        7       0.4      0       90        46       0.224     1450     620      475
                        8       0.4      1.5     50        74        0.25     1465     565      478
                        9       0.4      3       50        74       0.224     1320     590      460


                       processing elements (neurons) organized in several layers. These neurons are connected
                       to  each  other  by  weighted  links  denoted  by  synapses  which  establish  the  relationship
                       between  input  data  and  output  data.  There  are  many  ANN  models  and  multilayer
                       perceptions, which only feed forward and multilayered networks, were considered in this
                       paper. The structure of these ANN has three types of layers: input layer, hidden layer and
                                                                                                   out
                                                                                           inp
                       output layer. The biases in the neurons of the hidden and output layers, Oi  and Oj ,
                       respectively,  are  controlled  during  data  processing.  The  biases  in  the  neurons  of  the
   164   165   166   167   168   169   170   171   172   173   174