Page 314 - Data Science Algorithms in a Week
P. 314

Artificial Intelligence for the Modeling and Prediction ...   295

                       Buciński, A., Socha, A., Wnuk, M., Bączek, T., Nowaczyk, A., Krysiński, J., Goryński,
                          K., & Koba, M. (2009). Artificial neural networks in prediction of antifungal activity
                          of a series of pyridine derivatives against Candida albicans, J Microbiol Methods, 76,
                          25-29.
                       Bucinski,  A.,  Zielinski,  H.,  &  Kozlowska,  H.  (2004).  Artificial  neural  networks  for
                          prediction of antioxidant capacity of cruciferous sprouts. Trends Food Sci Technol,
                          15, 161-169.
                       Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in
                          food—a review. Int J Food Microbiol, 94, 223–253.
                       Cartwright, H. (2008). Artificial neural networks in biology and chemistry: the evolution
                          of a new analytical tool. Methods Mol Biol., 458, 1-13.
                       Chagas-Paula,  D.,  Oliveira,  T.,  Zhang,  T.,  Edrada-Ebel,  R.,  &  Da  Costa,  F.  (2015).
                          Prediction of anti-inflammatory plants and discovery of their biomarkers by machine
                          learning algorithms and metabolomic studies. Planta Med, 81, 450-458.
                       Chen, Q., Guo, Z., Zhao, J., & Ouyang, Q. (2012). Comparisons of different regressions
                          tools  in  measurement  of  antioxidant  activity  in  green  tea  using  near  infrared
                          spectroscopy. J Pharm Biomed Anal., 60, 92-97.
                       Chen, Y., Cao, W., Cao, Y., Zhang, L., Chang, B., Yang, W., & Liu X. (2011). Using
                          neural  networks  to  determine  the  contribution  of  danshensu  to  its  multiple
                          cardiovascular  activities  in  acute  myocardial  infarction  rats.  J  Ethnopharmacol.,
                          138,126-134.
                       Cimpoiu,  C.,  Cristea,  V.,  Hosu,  A.,  Sandru,  M.,  &  Seserman,  L.  (2011).  Antioxidant
                          activity  prediction  and  classification  of  some  teas  using  artificial  neural  networks.
                          Food Chem, 127, 1323-1328.
                       Cortes-Cabrera, A. & Prieto, J. (2010). Application of artificial neural networks to the
                          prediction  of  the  antioxidant  activity  of  essential  oils  in  two  experimental  in  vitro
                          models. Food Chem, 118, 141–146.
                       Cox,  S.,  Mann,  C.,  &  Markham,  J.  (2000).  The  mode  of  antimicrobial  action  of  the
                          essential oil of Melaleuca alternifolia (Tea tree oil). J Applied Microbiol, 88, 170–
                          175.
                       Cox,  S.,  Mann,  C.,  &  Markham,  J.  (2001).  Interactions  
between  components  of  the
                          essential oil of Melaleuca alternifolia. J Applied Microbiol, 91, 492–497. 

                       Daynac, M., Cortes-Cabrera, A., & Prieto J. (2015). Application of Artificial Intelligence
                          to  the  Prediction  of  the  Antimicrobial  Activity  of  Essential  Oils.  Evidence-Based
                          Complementary and Alternative Medicine. Article ID 561024, 9.
                       Deans, S. & Ritchie G. (1987). Antibacterial properties of plant essential oils. Int J Food
                          Microbiol, 5, 165–180. 

                       Desai,  K.,  Vaidya  B.,  Singhal,  R.,  &  Bhagwat,  S.  (2005).  Use  of  an  artificial  neural
                          network  in  modeling  yeast  biomass  and  yield  of  β-glucan,  Process  Biochem,  40,
                          1617-1626.
   309   310   311   312   313   314   315   316   317   318   319