Page 315 - Data Science Algorithms in a Week
P. 315
296 Jose M. Prieto
Didry, N., Dubreuil, L., & Pinkas, M. (1993). Antimicrobial activity of thymol, carvacrol
and cinnamaldehyde alone or in combination. Pharmazie, 48, 301–304.
Dohnal, V., Kuča, K., & Jun, D. (2005). What are artificial neural networks and what
they can do? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub., 149, 221–
224.
Eerikanen, T. & Linko, P. (1995). Neural network based food extrusion cooker control.
Engineering Applications of Artificial Neural Networks. Proceedings of the
International Conference EANN ’95, 473-476.
García-Domenech, R. & de Julián-Ortiz, J. (1998). Antimicrobial Activity
Characterization in a Heterogeneous Group of Compounds. J Chem Inf Comput Sci.,
38, 445-449.
Goodacre, R., Timmins, E., Burton, R., Kaderbhai, N., Woodward, A., Kell, D., &
Rooney, P. (1998). Rapid identification of urinary tract infection bacteria using
hyperspectral whole-organism fingerprinting and artificial neural networks.
Microbiology, 144, 1157-1170.
Goyal, S. (2013). Artificial neural networks (ANNs) in food science – A review. Int J Sci
World, 1, 19-28.
Guiné, R., Barroca, M., Gonçalves, F., Alves, M., Oliveira, S., & Mendes, M. (2015).
Artificial neural network modelling of the antioxidant activity and phenolic
compounds of bananas submitted to different drying treatments. Food Chem., 168,
454-459.
Han, S., Zhang, X., Zhou, P., & Jiang, J. (2014). Application of chemometrics in
composition-activity relationship research of traditional Chinese medicine. Zhongguo
Zhongyao Zazhi, 39, 2595-2602.
Huang, Y., Kangas, L., & Rasco, B. (2007). Applications of artificial neural networks
(ANNs) in food science, Crit. Rev. Food. Sci. Nut., 47, 133-126.
Huuskonen, J., Salo, M., & Taskinen, J. (1998). Aqueous Solubility Prediction of Drugs
Based on Molecular Topology and Neural Network Modeling. J Chem Inf Comput
Sci, 38, 450-456.
Jaén-Oltra, J., Salabert-Salvador, M, García-March, J., Pérez-Giménez, F., & Tomás-
Vert, F. (2000). Artificial neural network applied to prediction of fluorquinolone
antibacterial activity by topological methods. J. Med. Chem., 43, 1143–1148.
Jalali-Heravi, M., & Parastar, F. (2000). Use of artificial neural networks in a QSAR
study of anti-HIV activity for a large group of HEPT derivatives. J Chem Inf Comput
Sci., 40, 147-154.
Jezierska, A., Vračko, M., & Basak, S. (2004). Counter-propagation artificial neural
network as a tool for the independent variable selection: Structure-mutagenicity study
on aromatic amines. Mol Divers, 8, 371–377.
Karaman, S., Ozturk, I., Yalcin, H., Kayacier, A., & Sagdic, O. (2012). Comparison of
adaptive neuro-fuzzy inference system and artificial neural networks for estimation