Page 315 - Data Science Algorithms in a Week
P. 315

296                              Jose M. Prieto

                       Didry, N., Dubreuil, L., & Pinkas, M. (1993). Antimicrobial activity of thymol, carvacrol
                          and cinnamaldehyde alone or in combination. Pharmazie, 48, 301–304.
                       Dohnal, V., Kuča, K., & Jun, D. (2005). What are artificial neural networks and what
                          they can do? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub., 149, 221–
                          224.
                       Eerikanen, T. & Linko, P. (1995). Neural network based food extrusion cooker control.
                          Engineering  Applications  of  Artificial  Neural  Networks.  Proceedings  of  the
                          International Conference EANN ’95, 473-476.
                       García-Domenech,  R.  &  de  Julián-Ortiz,  J.  (1998).  Antimicrobial  Activity
                          Characterization in a Heterogeneous Group of Compounds. J Chem Inf Comput Sci.,
                          38, 445-449.
                       Goodacre,  R.,  Timmins,  E.,  Burton,  R.,  Kaderbhai,  N.,  Woodward,  A.,  Kell,  D.,  &
                          Rooney,  P.  (1998).  Rapid  identification  of  urinary  tract  infection  bacteria  using
                          hyperspectral  whole-organism  fingerprinting  and  artificial  neural  networks.
                          Microbiology, 144, 1157-1170.
                       Goyal, S. (2013). Artificial neural networks (ANNs) in food science – A review. Int J Sci
                          World, 1, 19-28.
                       Guiné, R., Barroca, M., Gonçalves, F., Alves, M., Oliveira, S., & Mendes, M. (2015).
                          Artificial  neural  network  modelling  of  the  antioxidant  activity  and  phenolic
                          compounds of bananas submitted to different drying treatments. Food Chem., 168,
                          454-459.
                       Han,  S.,  Zhang,  X.,  Zhou,  P.,  &  Jiang,  J.  (2014).  Application  of  chemometrics  in
                          composition-activity relationship research of traditional Chinese medicine. Zhongguo
                          Zhongyao Zazhi, 39, 2595-2602.
                       Huang, Y., Kangas, L., & Rasco, B. (2007). Applications of artificial neural networks
                          (ANNs) in food science, Crit. Rev. Food. Sci. Nut., 47, 133-126.
                       Huuskonen, J., Salo, M., & Taskinen, J. (1998). Aqueous Solubility Prediction of Drugs
                          Based on Molecular Topology and Neural Network Modeling. J Chem Inf Comput
                          Sci, 38, 450-456.
                       Jaén-Oltra,  J.,  Salabert-Salvador,  M,  García-March,  J.,  Pérez-Giménez,  F.,  &  Tomás-
                          Vert,  F.  (2000).  Artificial  neural  network  applied  to  prediction  of  fluorquinolone
                          antibacterial activity by topological methods. J. Med. Chem., 43, 1143–1148.
                       Jalali-Heravi,  M.,  &  Parastar,  F.  (2000).  Use  of  artificial  neural  networks  in  a  QSAR
                          study of anti-HIV activity for a large group of HEPT derivatives. J Chem Inf Comput
                          Sci., 40, 147-154.
                       Jezierska,  A.,  Vračko,  M.,  &  Basak,  S.  (2004).  Counter-propagation  artificial  neural
                          network as a tool for the independent variable selection: Structure-mutagenicity study
                          on aromatic amines. Mol Divers, 8, 371–377.
                       Karaman, S., Ozturk, I., Yalcin, H., Kayacier, A., & Sagdic, O. (2012). Comparison of
                          adaptive neuro-fuzzy inference system and artificial neural networks for estimation
   310   311   312   313   314   315   316   317   318   319   320