Page 316 - Data Science Algorithms in a Week
P. 316

Artificial Intelligence for the Modeling and Prediction ...   297

                          of oxidation parameters of sunflower oil added with some natural byproduct extracts.
                          J Sci Food Agric, 92, 49-58.
                       Kovesdi,  I.,  Ôrfi,  L.,  Náray-Szabó,  G.,  Varró,  A.,  Papp,  J.,  &  Mátyu  P.  (1999).
                          Application of neural networks in structure-activity relationships. Med Res Rev., 19,
                          249-269.
                       Krogh, A. (2008). What are artificial neural networks? Nature biotechnol, 26, 195-197.
                       Kröse,  B.,  &  van  der  Smagt,  P.  (1996).  An  introduction  to  neural  networks  (8   ed.).
                                                                                                th
                          University of Amsterdam.
                       Larder,  B.,  Wang,  D.,  Revell,  A.,  Montaner,  J.,  Harrigan,  R.,  De  Wolf,  F.,  Lange,  J.,
                          Wegner, S., Ruiz, L., Pérez-Elías, M., Emery, S., Gatell, J., Monforte, A., Torti, C.,
                          Zazzi,  M.,  &  Lane,  C.  (2007).  The  development  of  artificial  neural  networks  to
                          predict virological response to combination HIV therapy. Antivir Ther., 12, 15-24.
                       Latrille, E., Corrieu, G., & Thibault J. (1993). pH prediction and final fermentation time
                          determination  in  lactic  acid  batch  fermentations.  Comput.  Chem.  Eng.  17,  S423-
                          S428.
                       Ma, J., Cai, J., Lin, G., Chen, H., Wang, X., Wang, X., & Hu, L. (2014). Development of
                          LC-MS determination method and back-propagation ANN pharmacokinetic model of
                          corynoxeine in rat. J Chromatogr B Analyt Technol Biomed Life Sci., 959, 10-15.
                       Maulidiani, A., Khatib, A., Shitan, M., Shaari, K., & Lajis, N. (2013). Comparison of
                          Partial Least Squares and Artificial Neural Network for the prediction of antioxidant
                                                                                 1
                          activity  in  extract  of  Pegaga  (Centella)  varieties  from  H  Nuclear  Magnetic
                          Resonance spectroscopy. Food Res Int, 54, 852-860.
                       Mendelsohn,  A.  &  Larrick,  J.  (2014).  Paradoxical  Effects  of  Antioxidants  on  Cancer.
                          Rejuvenation Research, 17(3), 306-311.
                       Misharina, T., Alinkina, E., Terenina, M., Krikunova, N., Kiseleva, V., Medvedeva. I., &
                          Semenova,  M.  (2015).  Inhibition  of  linseed  oil autooxidation  by  essential  oils and
                          extracts from spice plants. Prikl Biokhim Mikrobiol., 51, 455-461.
                       Murcia-Soler,  M.,  Pérez-Giménez,  F.,  García-March,  F.,  Salabert-Salvador,  M.,  Díaz-
                          Villanueva, W., Castro-Bleda, M., & Villanueva-Pareja, A. (2004). Artificial Neural
                          Networks  and  Linear  Discriminant  Analysis:   A  Valuable  Combination  in  the
                          Selection of New Antibacterial Compounds. J Chem Inf Comput Sci., 44, 1031–1041.
                       Musa,  K.,  Abdullah,  A.,  &  Al-Haiqi,  A.  (2015).  Determination  of  DPPH  free  radical
                          scavenging  activity:  Application  of  artificial  neural  networks.  Food  Chemistry,
                          194(12), 705-711.
                       Nagahama, K., Eto, N., Yamamori, K., Nishiyama, K., Sakakibara, Y., Iwata, T., Uchida,
                          A., Yoshihara, I., & Suiko, M. (2011). Efficient approach for simultaneous estimation
                          of multiple health-promoting effects of foods. J Agr Food Chem, 59, 8575-8588.
                       Najjar,  Y.,  Basheer,  I.,  &  Hajmeer,  M.  (1997).  Computational  neural  networks  for
                          predictive microbiology: i. methodology. Int J Food Microbiol, 34, 27– 49.
                       Nakatani, N. (1994). Antioxidative and antimicrobial constituents of 
herbs and spices.

                          Dev Food Scie, 34, 251– 271.
   311   312   313   314   315   316   317   318   319   320   321