Page 316 - Data Science Algorithms in a Week
P. 316
Artificial Intelligence for the Modeling and Prediction ... 297
of oxidation parameters of sunflower oil added with some natural byproduct extracts.
J Sci Food Agric, 92, 49-58.
Kovesdi, I., Ôrfi, L., Náray-Szabó, G., Varró, A., Papp, J., & Mátyu P. (1999).
Application of neural networks in structure-activity relationships. Med Res Rev., 19,
249-269.
Krogh, A. (2008). What are artificial neural networks? Nature biotechnol, 26, 195-197.
Kröse, B., & van der Smagt, P. (1996). An introduction to neural networks (8 ed.).
th
University of Amsterdam.
Larder, B., Wang, D., Revell, A., Montaner, J., Harrigan, R., De Wolf, F., Lange, J.,
Wegner, S., Ruiz, L., Pérez-Elías, M., Emery, S., Gatell, J., Monforte, A., Torti, C.,
Zazzi, M., & Lane, C. (2007). The development of artificial neural networks to
predict virological response to combination HIV therapy. Antivir Ther., 12, 15-24.
Latrille, E., Corrieu, G., & Thibault J. (1993). pH prediction and final fermentation time
determination in lactic acid batch fermentations. Comput. Chem. Eng. 17, S423-
S428.
Ma, J., Cai, J., Lin, G., Chen, H., Wang, X., Wang, X., & Hu, L. (2014). Development of
LC-MS determination method and back-propagation ANN pharmacokinetic model of
corynoxeine in rat. J Chromatogr B Analyt Technol Biomed Life Sci., 959, 10-15.
Maulidiani, A., Khatib, A., Shitan, M., Shaari, K., & Lajis, N. (2013). Comparison of
Partial Least Squares and Artificial Neural Network for the prediction of antioxidant
1
activity in extract of Pegaga (Centella) varieties from H Nuclear Magnetic
Resonance spectroscopy. Food Res Int, 54, 852-860.
Mendelsohn, A. & Larrick, J. (2014). Paradoxical Effects of Antioxidants on Cancer.
Rejuvenation Research, 17(3), 306-311.
Misharina, T., Alinkina, E., Terenina, M., Krikunova, N., Kiseleva, V., Medvedeva. I., &
Semenova, M. (2015). Inhibition of linseed oil autooxidation by essential oils and
extracts from spice plants. Prikl Biokhim Mikrobiol., 51, 455-461.
Murcia-Soler, M., Pérez-Giménez, F., García-March, F., Salabert-Salvador, M., Díaz-
Villanueva, W., Castro-Bleda, M., & Villanueva-Pareja, A. (2004). Artificial Neural
Networks and Linear Discriminant Analysis: A Valuable Combination in the
Selection of New Antibacterial Compounds. J Chem Inf Comput Sci., 44, 1031–1041.
Musa, K., Abdullah, A., & Al-Haiqi, A. (2015). Determination of DPPH free radical
scavenging activity: Application of artificial neural networks. Food Chemistry,
194(12), 705-711.
Nagahama, K., Eto, N., Yamamori, K., Nishiyama, K., Sakakibara, Y., Iwata, T., Uchida,
A., Yoshihara, I., & Suiko, M. (2011). Efficient approach for simultaneous estimation
of multiple health-promoting effects of foods. J Agr Food Chem, 59, 8575-8588.
Najjar, Y., Basheer, I., & Hajmeer, M. (1997). Computational neural networks for
predictive microbiology: i. methodology. Int J Food Microbiol, 34, 27– 49.
Nakatani, N. (1994). Antioxidative and antimicrobial constituents of
herbs and spices.
Dev Food Scie, 34, 251– 271.