Page 39 - Tlahuizcalli CB-28_Neat
P. 39

References                                              Leyva,  A.  I.  (2012).  Estabilidad  de  Puntos  de  Equilibrio  en  el
                                                                   Problema  Restringido  de  3-Cuerpos,  Tesis  de  licenciatura,
                                                                   Universidad Autónoma de Coahuila.
          Bengochea  A.  &  Piña  E.  (2009).  The  Saturn,  Janus  and
           Epimetheus dynamics as a gravitational three-body problem
           in the plane, Revista Mexicana de Física, 55 (2), 97-105.    McGhee,  R.  (1974).  Triple  collision  in  the  collinear  three  body
                                                                   problem. Invent. Math. 27, 191-227.
          Butcher, C. (2003). Numerical methods for ordinary differential
           equations. John Wiley & Sons.                          Meyer U. Kenneth R., Glen R. Hall, Dan Offin. (2000).  Introduction
                                                                   to Hamiltonian Dynamical Systems and the N-body Problem.
                                                                   Second edition, Springer.
          Chenciner, A. & Montgomery, R. (2000)., A remarkable periodic
           solution  of  the  three-body  problem  in  the  case  of  equal
           masses. Ann. Of Math. (2) 152 no. 3, 881-901.          Moeckel, R. (1983). Orbits near triple collision in the three-body
                                                                   problem. Indiana Univ. Math. Jour 32, 221-240.
          Devaney,  R.  &  Blowing.  (1982).    Up  Singularities  in  Classical
           Mechanical  Systems.  The  American  Mathematical  Monthly.   Montgomery,  R.  &  Buzelli  C.  (2019).  The  Three-Body  Problem,
           Vol 89, No. 8, 535-552,                                 Scientific American 321(2) 66-75.
                                                                   Recuperado de: https://www.jstor.org/stable/27265293
          Diacu, F. & Colmes, P. (1996). Celestial Encounters. Ed. Princeton
           University Press.                                      Szbehely,  V.  G. (1967).  Theory of orbits, Academic Press, New
                                                                   York.
          Fraser,  C.  J.  L.  (1985).  Lagrange's  changing  approach  to  the
           foundations of the calculus of variations. Arch. Hist. Exact Sci.   Valtonen, M.  & Karttunen, H. (2006). The Three-Body Problem.
           32, 151–191.                                            Cambridge, UK: Cambridge University Press.

          Kratiuk Anton (2024). Recuperado de:                    Wintner,  A. The  analytical foundations of celestial mechanics.
           https://gagadget.com/es/458525-la-serie-de-ciencia-ficcion-  (1941). Princeton, Math. Series, Vol.5, Princeton Univ. Press, N.Y.
           3-body-problem-tendra-una-secuela-netflix-confirma-que-
           trabaja-en-nuevos-episodios/

















                                               De acuerdo con el Estilo APA 7,
                                     se sugiere citar este artículo de la siguiente manera:

           Saucedo, J., Rodríguez, C. y Fraga, L. (2024). Una aproximación en el problema de 3-Cuerpos. Tlahuizcalli,
                               10(28), 30-38. https://sites.google.com/site/eaecbpublicaciones/












                                                                                                            38
           Año 10 Núm. 28 enero-abril 2024                                                        Tlahuizcalli ISSN: 2448-7260
   34   35   36   37   38   39   40   41   42   43   44