Page 18 - Chapter 5
P. 18

 Teorema 1


   Jika A = {a1, a2,…, an} adalah himpunan yang berisi n

   elemen, maka ada n! = N × (n-1) ×… 2 × 1 permutasi dari A

   p (a1) --- n cara

   p (a2) --- n-1 cara (p (a1) diperbaiki) …



   p (an-1) --- 2 cara (p (a1),… p (an-2) diperbaiki)

   p (an) --- 1 arah (p (a1),… p (an-1) diperbaiki)




   Benar-benar ada n! permutasi A.





        Permutasi cyclic

   Misalkan b1, b2,…, br menjadi elemen yang berbeda dari

   himpunan A = {a1, a2,…, an}. Permutasi p: AA

   ditentukan oleh






















      p(x)=x,      jika x di A, x is bukan di {b ,b ,…,b }
                                                                              1     2         r
  disebut permutasi siklik dengan panjang r, atau hanya siklus

  dengan panjang r, dilambangkan dengan (b ,b ,…,b )
                                                                                               r
                                                                                    2
                                                                               1
   13   14   15   16   17   18   19   20   21   22   23