Page 14 - PROPOSAL LATIP Zanamivir_Neat 2
P. 14

be  randomized  to  be  administered  orally  (30  mg/kg)  with  either

                                 nanoemulsion,  microemulsion  and  control  formulation,  respectively.  In
                                 this  instance,  3.0%  w/w  of  captopril  in  olive  oil,  an  emulsion  formed

                                 without the use of glycerol and sucrose ester surfactant will be use as a
                                 control. Then, rats will be anesthetized with ketamine: xylazine; ratio of

                                 2:1. Blood samples (0.25 ml) will be collected from the jugular vein using

                                 heparinized syringes at predetermined time intervals of 0, 0.25, 0.5, 1.0,
                                 1.5, 2.0, 3.0, 4.0, 5.0 and 6.0 h. Plasma samples will be treated with DA

                                 prior to UPLC (Waters, USA) analysis.










                   4.0    REFERENCES

                   Akash  S  Ingale,  Sandhya  S  Ahire,  Sujeetkumar  I  Ahire,  &  Parag  R.  Patil.  (2021).
                        Formulation and evaluation of fast dissolving tablets of captopril. GSC Biological
                        and             Pharmaceutical              Sciences, 17(2),            123–130.
                        https://doi.org/10.30574/gscbps.2021.17.2.0338
                   Al Jbour, N. D. (2022). Enhanced oral bioavailability through nanotechnology in Saudi
                        Arabia:  A  meta-analysis.  Arabian  Journal  of  Chemistry,  15(4),  103715.
                        https://doi.org/10.1016/j.arabjc.2022.103715
                   Alqahtani, M. S., Kazi, M., Alsenaidy, M. A., & Ahmad, M. Z. (2021). Advances in Oral
                        Drug              Delivery. Frontiers            in            Pharmacology, 12.
                        https://doi.org/10.3389/fphar.2021.618411
                   Aungst,  B.  J.  (2012).  Absorption  Enhancers:  Applications  and  Advances. The  AAPS
                        Journal, 14(1), 10–18. https://doi.org/10.1208/s12248-011-9307-4
                   Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources
                        and toxicity. Biointerphases, 2(4), MR17–MR71. https://doi.org/10.1116/1.2815690
                   Caco-2    Permeability   Assay    -   IONTOX.      (2020,   March     27).   IONTOX.
                        https://www.iontox.com/caco-2-permeability-assay/
                   Cao, Q., Wu, H., Zhu, L., Wu, D., Zhu, Y., Zhu, Z., & Cui, J. (2011). Preparation and
                        evaluation  of  zanamivir-loaded  solid  lipid  nanoparticles.  Journal  of  Controlled
                        Release, 152, e2–e4. https://doi.org/10.1016/j.jconrel.2011.08.085
                   Cass, L. M. R., Efthymiopoulos, C., & Bye, A. (1999). Pharmacokinetics of Zanamivir
                        After Intravenous, Oral, Inhaled or Intranasal Administration to Healthy Volunteers.
                        Clinical        Pharmacokinetics,         36(Supplement          1),        1–11.
                        https://doi.org/10.2165/00003088-199936001-00001
                   Cheer,  S.  M.,  &  Wagstaff,  A.  J.  (2002).  Zanamivir.  Drugs,  62(1),  71–106.
   9   10   11   12   13   14   15   16