Page 431 - Corporate Finance PDF Final new link
P. 431

NPP













                  BRILLIANT’S                       Capital Budgeting                               431


                      Symbolically, the IRR is equal to the value  {gå~m°b Ho$ ê$n _| IRR {ZåZ BŠdoeZ _| ‘r’ H$s d¡ë`y
                  of ‘r’ in the equation:                     Ho$ ~am~a hmoVm h¡:

                                               CF    CF 1  CF 2      CF n  SV +WC  n
                                                                             n
                                        CO =       +     +      +........  +
                                           0      0    1      2         n        n
                                              (I+r)  (I+r)  (I+r)   (I+r)    (I+r)
                      Where, CO    = Cash outflow at time O,
                                 0
                              CF   = Cash inflow at different point of time
                                 1
                                n =  Life of the project and
                                r = Rate of discount (yet to be calculated)
                         SV & WC = Salvage value and working capital at the end of the n years.
                  Acceptance-Rejection  Decision              ñdrH¥${V-AñdrH¥${V H$m {Z`_
                      In order to take decision about acceptance  {H$gr àmoOoŠQ> H$mo ñdrH¥$V `m AñdrH¥$V H$aZo H$m
                  or rejection of any capital investment project,  {ZU©` boZo Ho$ {b`o JUZm H$s JB© IRR H$s VwbZm [aQ>Z© H$s
                  the  calculated  IRR  is  compared  with  the  re-
                                                              dm§{N>V aoQ> go H$s OmVr h¡ {Ogo "H$Q>-Am°\$-aoQ>" `m
                  quired rate of return which is also known as the  "hS>©b aoQ>' ^r H$hm OmVm h¡Ÿ& `{X IRR, H$Q>-Am°\$-aoQ>
                  'cut-off rate' or 'hurdle rate'. If the IRR is greater
                                                              H$s VwbZm _| A[YH$ hmo Vmo àmoOoŠQ> H$mo ñdrH$ma {H$`m Om
                  than the cut-off rate, the project would be ac-
                                                              gH$Vm h¡ AÝ`Wm Bgo AñdrH¥$V H$a XoZm Mm{hEŸ& `{X
                  ceptable, otherwise it should be rejected. If both
                  the IRR and the required rate of return are equal,  IRR VWm [aQ>Z© H$m dm§{N>V aoQ> XmoZm| g_mZ h¢ Vmo àmoOoŠQ>
                  the project may be accepted or rejected.    H$mo ñdrH¥$V ^r {H$`m Om gH$Vm h¡ `m AñdrH¥$V ^rŸ&
                  Procedure to Find Out the Value 'r'         'r' H$s d¡ë`y {ZYm©[aV H$aZo H$s à{H«$`m
                      The specific procedure to find out the value  'r' H$s d¡ë`y àmá H$aZo H$s {d{eï> {d{Y, 'r' H$s _mZr
                  of ‘r’ implies finding out the net present value  JB© Xmo {d{^Þ d¡ë`yO na ànmoOb H$s ZoQ> àoOoÝQ> d¡ë`y H$mo
                  of the proposal at two different assumed val-  àmá H$aZm Xem©Vr h¡ {Og_| IRR Ho  hmoZo H$s g§^mdZm hmoVr
                  ues of ‘r’ within which the IRR is expected to
                  lie. Thereafter, the two rates are interpolated  h¡Ÿ& CgHo$ ~mX, ZoQ> àoOoÝQ> d¡ë`y H$mo eyÝ` Ho$ ~am~a H$aZo
                  to make the net present value equal to zero.  Ho$ {cE XmoZm| Xam| H$s Am§V[aH$ JUZm H$s OmVr h¡Ÿ&
                      The procedure for the calculation of IRR    IRR H$s JUZm H$s à{H«$`m H$mo Xmo AbJ-AbJ
                  can be explained in two different situations:  n[apñW{V`m| _| g_Pm Om gH$Vm h¡:
                   1. When future cash flows are equal and take  1. O~ â`yMa H¡$e âbmoO ~am~a hmo VWm EÝ`yQ>r Ho$ ê$n
                      a form of annuity, and                      _| hmo VWm
                   2. When future cash flows are unequal.       2. O~ â`yMa H¡$e âbmoO ~am~a Zht hmoŸ&

                  1. When Future Cash Flows are Equal         1. O~ â`yMa H¡$e âbmoO ~am~a hmo
                      In  case the  proposal has  only one  cash  `{X {H$gr ànmoOb _| àma§^ _| H¡$e AmCQ>âbmo Ho$db
                  outflow in the beginning and the future cash  EH$ ~ma hr hmo VWm â`yMa H¡$e BZâbmoO ~am~a hm| Vmo
                  inflows are equal, the calculation of IRR is rather  IRR H$s JUZm AmgmZ hmoVr h¡Ÿ& Bgo {ZåZ{b{IV CXmhaU
                  simple. This can be explained with the help of
                  following example:                          H$s ghm`Vm go g_Pm Om gH$Vm h¡:
   426   427   428   429   430   431   432   433   434   435   436