Page 441 - Corporate Finance PDF Final new link
P. 441

NPP













                  BRILLIANT’S                       Capital Budgeting                               441


                  the other hand, the safety margin of project B  Xÿgar Va’$ àmoOo³Q> B H$m goâQ>r ‘m{O©Z Ho$db 13.5% h¡&
                  is only 13.5% (13.5% of ` 1,15,500 is approx.  (` 1,15,500 H$m 13.5% AWm©V² bJ^J 15,500)&
                  `  15,500).  NPV  method  does  not  provide  NPV ‘oWS àmoOo³Q> H$s goâQ>r ‘m{O©Z VWm [añH$ na
                  information about safety margin as well as the
                  amount of capital at risk.                  H¡${nQ>b H$s am{e Ho$ ~mao BÝ’$m°‘}eZ àXmZ Zht H$aVr h¡&>

                  Compounding Vs. Discounting                 H$ånmCpÊS>¨J ~Zm‘ {S>ñH$mCpÝQ>¨J
                      Compounding and  discounting are  two       H$ånmCpÝS>¨J VWm {S>ñH$mCpÝQ>¨J ’$m¶Z|{e¶b ‘¡ZoO‘|Q>
                  important concepts used for decision making  ‘| {S>[gOZ ‘oqH$J Ho$ {bE Cn¶moJ {H$E OmZo dmbo Xmo
                  in financial management. Both are just opposite
                  to each other and closely related like two sides  _hÎdnyU© H$m°ÝgoßQ²>g h¢& XmoZm| EH$-Xÿgao Ho$ {~ëHw$b {dnarV
                  of a coin.                                  h¢ VWm {g³Ho$ Ho$ Xmo nhbwAm| H$s EH$-Xÿgao go Ow‹S>o hþE h¢&
                      Compounding finds future value of present   H$ånmCpÝS>¨J ‘| nr[a¶S> Ho$ {bE àoOoÝQ> d¡ë¶y H$s â¶yMa
                  value for a given period and rate of interest.  d¡ë¶y VWm aoQ> Am°’$ BÝQ>aoñQ> kmV {H$¶m OmVm h¡& {S>ñH$mCpÝQ>¨J
                  Discounting finds present value of the same  ‘| EH$ nr[a¶S> Ho$ {bE go‘ â¶yMa d¡ë¶y H$s àoOoÝQ> d¡ë¶y VWm
                  future value for that period and rate. They have  aoQ> kmV H$s OmVr h¡& BZHo$ ~rM BÝdg© [aboeZ{en hmoVr h¡
                  inverse relationship and can be best illustrated  VWm Bgo CXmhaU XoH$a AÀN>o go g‘Pm¶m Om gH$Vm h¡,
                  by  demonstrating that  if a  present value  of
                                                              ¶{X {H$gr â¶yMa A‘mCÝQ> H$s àoOoÝQ> d¡ë¶y ‘| g‘mZ aoQ>
                  some future amount is using the same rate and
                  time period, the result will be the same amount  VWm Q>mB‘ nr[a¶S> H$m Cn¶moJ {H$¶m OmVm h¡, n[aUm‘
                  of future value.                            â¶yMa d¡ë¶y H$m go‘ A‘mCÝQ> hmoJm&

                      Symbolically;
                                                                         FV
                                                             n
                                                FV = PV (1 + r)  and  PV    n
                                                                       (1  r)
                      Suppose, we  deposit `  10,000 in  a  bank  ‘mZ  br{OE,  ¶{X  h‘  {H$gr ~¢H$  AH$mCÝQ> ‘|
                  @ 10% interest compounded annually and we   ` 10,000 {S>nm°{OQ> H$aVo h¢ {OgH$m dm{f©H$ H$ånmCÝS>
                  want to know how much will it grow after 5  BÝQ>aoñQ> @  10% h¡ VWm ¶h OmZZm MmhVo h¢ {H$ 5 df©
                  years, our approach is towards compounding  ~mX h‘ {H$VZm J«mo H$a|Jo& h‘mam EàmoM H$ånmCpÝS>¨J hmoJm
                  and we are willing to calculate future value of
                                                              VWm h‘ àoOoÝQ> d¡ë¶y H$s â¶yMa d¡ë¶y Ho$ëHy$boQ> H$a|Jo&
                  a given present value.
                                                FV = 10,000 (1 + 0.10)  =  `16,105
                                                                   5
                      Let  us take  just opposite  example. If  a  A~ BgH$m {dnarV CXmhaU boVo h¢& ¶{X EH$ H$ånZr
                  company offered to pay us after 5 year ` 16,105  5 df© ~mX ` 16,105 XoZo H$m Am°’$a H$aVr h¡ ¶{X
                  and we want to know how much money we
                                                              BÝQ>aoñQ> aoQ> 10% hmo Vmo h‘ ¶h OmZZm Mmh|Jo {H$ h‘|
                  should deposit in company if rate of interest is
                  10%, now our approach is discounting and we  {H$VZm A‘mCÝQ> O‘m H$aZm hmoJm, A~ h‘mar EàmoM
                  want to know the present value of the future  {S>ñH$mCpÝQ>¨J hmoVr h¡ VWm h‘ â¶yMa A‘mCÝQ> H$s àoOoÝQ>
                  value.                                      d¡ë¶y OmZZm Mmh|Jo&

                                                          16,105
                                                   PV          5   ` 10,000
                                                        (1 0.10)
   436   437   438   439   440   441   442   443   444   445   446