Page 197 - NGTU_paper_withoutVideo
P. 197

Modern Geomatics Technologies and Applications


          7.  Reference

          [1].   Benveniste, J., et al., Requirements for a Coastal Hazards Observing System. Frontiers in Marine Science, 2019. 6(348).

          [2].   Cipollini, P., et al., Monitoring Sea Level in the Coastal Zone with Satellite Altimetry and Tide Gauges. Surveys in
                 Geophysics, 2017. 38(1): p. 33-57.

          [3].   Handoko, E.Y., M.J. Fernandes, and C. Lázaro, Assessment of Altimetric Range and Geophysical Corrections and
                 Mean Sea Surface Models—Impacts on Sea Level Variability around the Indonesian Seas. Remote Sensing, 2017. 9(2):
                 p. 102.

          [4].   Roohi, S., et al., Lake Monitoring from a Combination of Multi Copernicus Missions: Sentinel-1 A and B and Sentinel-
                 3A. Journal of Hydrogeology & Hydrologic Engineering, 2019.

          [5].   Brown, G., The average impulse response of a rough surface and its applications. IEEE Transactions on Antennas and
                 Propagation, 1977. 25(1): p. 67-74.

          [6].   Vignudelli, S., et al., Satellite Altimetry Measurements of Sea Level in the Coastal Zone. Surveys in Geophysics, 2019.
                 40(6): p. 1319-1349.

          [7].   Gommenginger, C., et al., Retracking Altimeter Waveforms Near the Coasts, in Coastal Altimetry, S. Vignudelli, et al.,
                 Editors. 2011, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 61-101.

          [8].   Martin, T.V., et al., Analysis and retracking of continental ice sheet radar altimeter waveforms. Journal of Geophysical
                 Research, 1983. 88: p. 1608.

          [9].   Wingham D J, Rapley C G, Griffiths H. New techniques in satellite altimeter tracking systems. Proc IGARSS’86
                         Symp, Zurich, 1986. 13391344

          [10].   Davis, C.H., A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite
                 radar altimeters. IEEE Transactions on Geoscience and Remote Sensing, 1997. 35(4): p. 974-979.

          [11].   Jinyum, G., et al., Improved threshold retracker for satellite altimeter waveform retracking over coastal sea. Progress in
                 Natural Science, 2006. 16(7): p. 732-738.

          [12].   GUO, J.Y., et al., Optimized threshold algorithm of Envisat waveform retracking over coastal sea. Chinese Journal of
                 geophysics, 2010. 53(2): p. 231-239.

          [13].   Lee, H., et al., Validation of Jason-2 Altimeter Data by Waveform Retracking over California Coastal Ocean. Marine
                 Geodesy, 2010. 33(sup1): p. 304-316.

          [14].   Yang, L., et al., A coastal altimetry retracking strategy based on waveform classification and sub-waveform extraction.
                 International Journal of Remote Sensing, 2012. 33(24): p. 7806-7819.

          [15].   Tseng, K., et al., The Improved Retrieval of Coastal Sea Surface Heights by Retracking Modified Radar Altimetry
                 Waveforms. IEEE Transactions on Geoscience and Remote Sensing, 2014. 52(2): p. 991-1001.

          [16].   Peng, F. and X. Deng, A New Retracking Technique for Brown Peaky Altimetric Waveforms. Marine Geodesy, 2018.
                 41(2): p. 99-125.

          [17].   Maulik Jain, et al., Sea Surface Height Determination In The Arctic Using Cryosat-2 SAR Data From Primary Peak
                 Empirical Retrackers. 2014.

          [18].   Roohi, S., et al., Evaluation of CryoSat-2 water level derived from different retracking scenarios over selected inland
                 water bodies. Advances in Space Research, 2019.

                                                                                                              10
   192   193   194   195   196   197   198   199   200   201   202