Page 197 - NGTU_paper_withoutVideo
P. 197
Modern Geomatics Technologies and Applications
7. Reference
[1]. Benveniste, J., et al., Requirements for a Coastal Hazards Observing System. Frontiers in Marine Science, 2019. 6(348).
[2]. Cipollini, P., et al., Monitoring Sea Level in the Coastal Zone with Satellite Altimetry and Tide Gauges. Surveys in
Geophysics, 2017. 38(1): p. 33-57.
[3]. Handoko, E.Y., M.J. Fernandes, and C. Lázaro, Assessment of Altimetric Range and Geophysical Corrections and
Mean Sea Surface Models—Impacts on Sea Level Variability around the Indonesian Seas. Remote Sensing, 2017. 9(2):
p. 102.
[4]. Roohi, S., et al., Lake Monitoring from a Combination of Multi Copernicus Missions: Sentinel-1 A and B and Sentinel-
3A. Journal of Hydrogeology & Hydrologic Engineering, 2019.
[5]. Brown, G., The average impulse response of a rough surface and its applications. IEEE Transactions on Antennas and
Propagation, 1977. 25(1): p. 67-74.
[6]. Vignudelli, S., et al., Satellite Altimetry Measurements of Sea Level in the Coastal Zone. Surveys in Geophysics, 2019.
40(6): p. 1319-1349.
[7]. Gommenginger, C., et al., Retracking Altimeter Waveforms Near the Coasts, in Coastal Altimetry, S. Vignudelli, et al.,
Editors. 2011, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 61-101.
[8]. Martin, T.V., et al., Analysis and retracking of continental ice sheet radar altimeter waveforms. Journal of Geophysical
Research, 1983. 88: p. 1608.
[9]. Wingham D J, Rapley C G, Griffiths H. New techniques in satellite altimeter tracking systems. Proc IGARSS’86
Symp, Zurich, 1986. 13391344
[10]. Davis, C.H., A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite
radar altimeters. IEEE Transactions on Geoscience and Remote Sensing, 1997. 35(4): p. 974-979.
[11]. Jinyum, G., et al., Improved threshold retracker for satellite altimeter waveform retracking over coastal sea. Progress in
Natural Science, 2006. 16(7): p. 732-738.
[12]. GUO, J.Y., et al., Optimized threshold algorithm of Envisat waveform retracking over coastal sea. Chinese Journal of
geophysics, 2010. 53(2): p. 231-239.
[13]. Lee, H., et al., Validation of Jason-2 Altimeter Data by Waveform Retracking over California Coastal Ocean. Marine
Geodesy, 2010. 33(sup1): p. 304-316.
[14]. Yang, L., et al., A coastal altimetry retracking strategy based on waveform classification and sub-waveform extraction.
International Journal of Remote Sensing, 2012. 33(24): p. 7806-7819.
[15]. Tseng, K., et al., The Improved Retrieval of Coastal Sea Surface Heights by Retracking Modified Radar Altimetry
Waveforms. IEEE Transactions on Geoscience and Remote Sensing, 2014. 52(2): p. 991-1001.
[16]. Peng, F. and X. Deng, A New Retracking Technique for Brown Peaky Altimetric Waveforms. Marine Geodesy, 2018.
41(2): p. 99-125.
[17]. Maulik Jain, et al., Sea Surface Height Determination In The Arctic Using Cryosat-2 SAR Data From Primary Peak
Empirical Retrackers. 2014.
[18]. Roohi, S., et al., Evaluation of CryoSat-2 water level derived from different retracking scenarios over selected inland
water bodies. Advances in Space Research, 2019.
10