Page 53 - Álgebra
P. 53
Exponentes racionales
Una expresión radical de la forma n am se puede escribir como una expresión exponen- cial utilizando la propiedad siguiente.
(a1/n)m = am/n
Para cualquier número positivo a y enteros m y n ≥ 2 (mayores o iguales que 2), tenemos que:
nam =am/n
323 a 24 b 83 c b4
Ejemplo 29
45
Resuelve las operaciones siguientes.
112 d16 e2 f
2 a m5 Solución
323
a 24 =423 b 83 =382 c b4 =4b3
112
d 162 = 16 e a2 = a f m5 = 5 m2
Ahora considera que en la expresión n bm se tiene el caso en que m = n, entonces resulta
que n bm = n bn . En esta situación es necesario puntualizar lo siguiente.
• Si n es impar, n bn = bn/n = b para todo número real b.
•Sinespar, n bn =b paratodonúmerorealb>0,yesiguala(−b)paratodonúmero b < 0.
Resuelve las operaciones siguientes.
a 52
d 72 Solución
a 52 =5 d 72 =7
b (−5)2 e (−6)2
b (−5)2=−(−5) =5 e (−6)2=−(−6) =6
c 4(−3)4 f 6(−2)6
c 4 (−3)4=−(−3) =3 f 6 (−2)6=−(−2) =2
Ejemplo 30
Si n es par, se cumple que, para cualquier número real a: n an = a
LOS NÚMEROS REALES PARA CONTAR, COMPARAR Y MEDIR