Page 54 - e-book PROGRAM LINEAR okeeee
P. 54

x1 ≥ 0, x2 ≥ 0


                                  3x1 + 2x2 +x3 =4

                                  x1 + x2 =3

                                                    1
                                   3
                                                        4
                                             1
                                        2
                                  [                 ] [   2] = [ ]
                                   1    1    0      3   3


                                  A tidak mengandung identity matriks.

                                  Masukkan variabel buatan xa

                                  3x1 + 2x2 + x3 + 0xa = 4

                                  x1 + x2 + 0x3 + xa = 3

                                                         1
                                                        
                                                             4
                                                  0
                                             1
                                        2
                                   3
                                                       2
                                  [                         ] [ ] = [ ]
                                   1    1    0    1      3   3
                                                         4

                                  I = identity matriks, sekaligus basis
                                  Maka Z = 7x1 + 5x2 +0x3 + (-M)xa : maksimum

                           Contoh 2)

                                  Cari x1, x2


                                  s.r.s:  Z = 3x1 + 2x2 + x3 + 5x4  ; maksimum

                                  d.p  :   3x1 + 4x2 + 5x3 + 6x4 ≤ 5

                                         2x1 + 6x2 + x3 + 5x4 ≥  6

                                         x1 + x2 + 5x3 + x4 = 7

                                         x1 ≥ 0,   x2 ≥ 0,   x3 ≥ 0,   x4 ≥ 0












                                                                53
   49   50   51   52   53   54   55   56   57   58   59