Page 39 - u4
P. 39

T1: OSO
          P2: OSO/OVY
 P1: OSO/OVY
                               GO01962-Smith-v1.cls
 UAE_Math_Grade_12_Vol_1_SE_718383_ch3
                                                              50. (a) Compute lim
         15. lim  x 3  QC: OSO/OVY  16. lim  e x  July 4, 2016  13:38         sin x 2  and compare your result to lim  sin x .
            x→∞ e x                   x→∞ x 4                              x→0  x 2  2                x→0  x
                                         (
         17. lim  x cos x − sin x  18. lim cot x −  1  )         (b) Compute lim  1 − cos x  and compare your result to
                                                                                 x
                                                                                  4
                                                                           x→0
                     2
            x→0  x sin x              x→0       x                        1 − cos x
                                          (            )              lim      .
               ( x + 1  2  )                        1                       2
         19. lim     −             20. lim  tan x +                   x→0  x
            x→0   x    sin 2x         x→    ∕2   x −     ∕2      (c) Use your results from parts (a) and (b) to evaluate
                ln x                      ln x                     lim  sin x 3  and lim  1 − cos x 3
         21. lim                                                        3            6   without doing any calcula-
            x→∞ x 2                22. lim √ x                     x→0  x     x→0   x
                                      x→∞
                                                                   tions.
         23. lim te −t             24. lim t sin (1∕t)        51. Find functions f such that lim f(x) has the indeterminate
            t→∞                       t→∞                                             x→∞
               ln (ln t)                 sin (sin t)             form  ∞ , but where the limit (a) does not exist; (b) equals 0;
                                                                     ∞
         25. lim                   26. lim                       (c) equals 3 and (d) equals −4.
            t→1  ln t                  t→0  sin t
               sin (sinh x)              (  sin x − sinh x  )  52. Find functions f such that lim f(x) has the indeterminate
         27. lim                   28. lim                                            x→∞
            x→0 sinh (sin x)           x→0 cos x − cosh x        form ∞−∞, but where the limit (a) does not exist; (b)
                                          √                      equals 0 and (c) equals 2.
                ln x                        x
         29. lim                   30. lim
            x→0 +  cot x              x→0 +  ln x            In exercises 53 and 54, determine which function “dominates,”
                √                                            where we say that the function f dominates the function g as
                  2
         31. lim( x + 1 − x)       32. lim(ln x − x)
            x→∞                       x→∞                                                           f(x)
                                               √             x → ∞ if              f(x) =              g(x) =∞ and either               =∞ or
               (    1 ) x                 | x + 1 |  x 2 −4          x→∞     x→∞                x→∞ g(x)
         33. lim 1 +               34. lim  |  |
            x→∞     x                 x→∞ x − 2 | |                         g(x)
                                          |
                                          |
                (     √      )            √                  x→∞ f(x)  = 0.
                  1       x                5 − x − 2
         35. lim  √ −
            x→0 +  x    x + 1      36. lim √ 10 − x − 3       53. e or x (n = any positive integer)
                                       x→1
                                                                  x
                                                                      n
         37. lim (1∕x) x           38. lim (cos x) 1∕x
            x→0 +                     x→0 +                            p
                                                              54. ln x or x (for any number p > 0)
               (  t − 3 ) t              (  t − 3  ) t        ............................................................
         39. lim                   40. lim
            t→∞ t + 2                 t→∞ 2t + 1
         ............................................................  55. Basedonyouranswertoexercise53,conjecture lim(e t∕2  − t )
                                                                                                            3
                                                                                                    x→∞
         In exercises 41–44, find all error(s).                   and prove that your conjecture is correct.
                                                                           √ x − ln x
         41. lim  cos x  = lim  −sin x  = lim  −cos x  =− 1   56. Evaluate lim    . In the long run, what fraction of
            x→0 x 2  x→0  2x   x→0  2      2                            x→∞  √ x
                                                                 √      √
               e − 1     e x    e x  1                             x does  x − ln x represent?
                x
         42. lim    = lim  = lim  =
            x→0  x 2  x→0 2x  x→0 2  2                                      ln (x + 2x + 1)
                                                                               3
                                                              57. Evaluate lim         . Generalize your result to
                                                                               2
                x 2      x 2      2x       2                            x→∞ ln (x + x + 2)
         43. lim   = lim    = lim   = lim
            x→0 ln x 2  x→0 2 ln x  x→0 2∕x  x→0 −2∕x 2             ln (p(x))
                                                                 lim       for polynomials p and q such that p(x) > 0
                                   2
                            = lim(−x ) = 0.                      x→∞ ln (q(x))
                              x→0                                and q(x) > 0 for x > 0.
               sin x    cos x    −sin x
         44. lim   = lim    = lim     = 0.                                  ln (e + x)
                                                                               3x
            x→0 x 2  x→0 2x   x→0  2                          58. Evaluate  lim  2x  . Generalize your result to
                                                                         x→∞ ln (e + 4)
         ............................................................  ln (e + p(x))
                                                                        kx
                                                                 lim
         In exercises 45–48, name the method by determining whether  x→∞ ln (e + q(x))  for polynomials p and q and positive
                                                                        cx
         l’Ĥ opital’s Rule should be used or not.               numbers k and c.
                csc x               x −3∕2                            f(x)                        f(x )
                                                                                                    2
            x→0 +  x            x→0 +  ln x                        x→0 g(x)                    x→0 g(x )
         45. lim √           46. lim                          59. If lim  = L, what can be said about lim  ? Explain
                                                                                                    2
                                      2
                2
               x − 3x + 1          ln(x )                                         f(x)
         47. lim             48. lim                             why knowing that lim  = L for a ≠ 0, 1 does not tell you
            x→∞  tan −1  x      x→∞ e x∕3                                      x→a g(x)
         ............................................................           f(x )
                                                                                  2
                                                                 anything about lim  2  .
         49. (a) Starting with lim  sin 3x , cancel sin to get lim  3x , then  x→a g(x )
                          x→0 sin 2x           x→0 2x                                                       2
                            3
               cancel x’stoget . This answer is correct. Is either of  60. Give an example of functions f and g for which lim  f(x )
                            2
               the steps used valid? Use linear approximations to ar-                                  x→0 g(x )
                                                                                                            2
               gue that the first step is likely to give a correct answer.  exists, but lim  f(x)  does not exist.   Copyright © McGraw-Hill Education
            (b) Evaluate lim  sin nx  for nonzero constants n and m.     x→0 g(x)
                      x→0 sin mx
        248 | Lesson 4-2 | Indeterminate Forms and L’Hôpital’s Rule
   34   35   36   37   38   39   40   41   42   43   44