Page 4 - 08_Dontsov
P. 4
Alexander A. Dontsov, Yuri L. Koziratsky… Mathematical Model of the Process of Destruc-tion of the Aircraft Guidance…
моментами отстрела ЛТЦ в залпе; N c – число залпов в серии; T c – интервал между залпами в
серии; N п – число серий в последовательности; T п – интервал между последовательностями.
Модель формирования фоноцелевой обстановки (блок 1) обеспечивает расчет текущих
координат воздушной цели Y C , Z C и координат точки прицеливания ИК ГСН ракеты в соот-
ветствии с выражениями:
cos(
X X tp tp = = X + X + R R D р-ц cos(ϕ )cos( / 2ϕ G G )cos( / 2 θ π π − − θ G G ); );
D р-ц
Y = Y = tp tp Y + Y + R R D D р-ц cos( G )sin( / 2 θ / 2π π )sin( − − θ G G ); ); (2) (2)
ϕ cos(ϕ
(2)
G
р-ц
D D
Z
). θ и ϕ , а сигналы рассогласования по
лы наклона линии дальности = = Z + Z +«ракета-цель» равны D D
sin(
sin(ϕ ).ϕ
G G
Z tp
R R
tp
р-ц
р-ц
азимуту и углу места равны θΔ и ϕΔ . Обобщенная структурная схема математической моде-
Далее в блоке 1 методами компьютерной графики формируется изображение фоноце-
Далее в блоке 1 методами компьютерной графики формируется изображение фоноце-
Далее в блоке 1 методами компьютерной графики формируется изображение фоноцелевой
ли представлена на рис. 2.
левой и помеховой обстановки и рассчитываются углы наклона линии дальности между ра-
и помеховой обстановки и рассчитываются углы наклона линии дальности между ракетой и
левой и помеховой обстановки и рассчитываются углы наклона линии дальности между ра-
целью по азимуту и углу места: k
На рис. 2 использованы следующие обозначения: F – частота обновления информа-
кетой и целью по азимуту и углу места:
кетой и целью по азимуту и углу места:
ции о значениях сигналов рассогласования по азимуту и углу места (частота кадров МФПУ);
X X
Z
Z − Z−
Z
arctg
arctg
(3)
θ D D = arctg ( ( R R ); ); ϕ ϕ θ D D = = = arctg ( ( R R C C ). ). (3) (3)
Yr Y Y
Yr
− −
2 2
&
2 2
θ , ϕ & – измеренная ГСН угловая скорость вращения линии визирования цели; K , T –
C C
X + X +
Y Y
(Y − (Y −
) )
G
G
G
G
C C
R R
R R
коэффициент усиления и постоянная времени передаточной функции замкнутой петли ГСН;
На рис. 3 представлены примеры изображений фоноцелевой и помеховой обстановки, фор-
На рис. 3 представлены примеры изображений фоноцелевой и помеховой обстановки,
На рис. 3 представлены примеры изображений фоноцелевой и помеховой обстановки,
T , T – постоянные времени передаточной функции корректирующего фильтра; K – нави-
мируемые ИК ГСН ракеты на различных дальностях при атаке с задней полусферы (азимут
1
формируемые ИК ГСН ракеты на различных дальностях при атаке с задней полусферы (ази-
2
n
формируемые ИК ГСН ракеты на различных дальностях при атаке с задней полусферы (ази-
атаки: +140 град, угол места: –5 град) в условиях отстрела ЛТЦ (дальность начала отстрела –
гационная постоянная контура самонаведения ракеты; W
– максимальное значение боко-
мут атаки: +140 град, угол места: –5 град) в условиях отстрела ЛТЦ (дальность начала от-
мут атаки: +140 град, угол места: –5 град) в условиях отстрела ЛТЦ (дальность начала от-
max
2500 м), а на рис. 4 – при атаке с передней полусферы (азимут атаки: +15 град, угол места:
вой перегрузки ракеты; T , ξ – постоянная времени и коэффициент демпфирования переда-
стрела – 2500 м), а на рис. 4 – при атаке с передней полусферы (азимут атаки: +15 град, угол
3
+5 град). стрела – 2500 м), а на рис. 4 – при атаке с передней полусферы (азимут атаки: +15 град, угол
места: +5 град).
места: +5 град).
точной функции ракеты, стабилизированной автопилотом; W , W – составляющие боковой
v
g
Алгоритм селекции цели
перегрузки ракеты по горизонтальной и вертикальной плоскостям; N – число ЛТЦ в залпе;
з
В блоке 1 реализован алгоритм селекции цели матричной головкой самонаведения в усло-
T – интервал между моментами отстрела ЛТЦ в залпе; N – число залпов в серии; T – ин-
з
с
с
виях помех, представленный в [5]. Повышение помехозащищенности ГСН обеспечивается за
счет морфологического анализа изображений, получаемых ГСН, и формирования маски стро-
тервал между залпами в серии; N – число серий в последовательности; T – интервал меж-
п
п
ба, исключающей из дальнейшей обработки области изображения объектов, не имеющих при-
ду последовательностями.
D р-ц =1500 м D р-ц =1000 м D р-ц =500 м D р-ц =200 м
=200 м
=1000 м D р-ц
=500 м D р-ц
D р-ц
=1500 м D р-ц
Рис. 3. Примеры изображений ИК ГСН при атаке с задней полусферы
Рис. 3. Примеры изображений ИК ГСН при атаке с задней полусферы
з
N
Программа отстрела ЛТЦ N N з T c
c T
п
п T
D р-ц =1500 м D р-ц =1000 м D р-ц =500 м D р-ц =200 м
=200 м
=1500 м D р-ц
=1000 м D р-ц
=500 м D р-ц
D р-ц
Рис. 4. Примеры изображений ИК ГСН при атаке с передней полусферы
Рис. 4. Примеры изображений ИК ГСН при атаке с передней полусферы
Рис. 2. Обобщенная структурная схема математической модели
Рис. 2. Обобщенная структурная схема математической модели
– 225 –
Алгоритм селекции цели
Алгоритм селекции цели
Модель формирования фоноцелевой обстановки (блок 1) обеспечивает расчет теку-
В блоке 1 реализован алгоритм селекции цели матричной головкой самонаведения
В блоке 1 реализован алгоритм селекции цели матричной головкой самонаведения в в
щих координат воздушной цели Y C , Z C и координат точки прицеливания ИК ГСН ракеты в
соответствии с выражениями:
условиях помех, представленный в [5]. Повышение помехозащищенности ГСН обеспечива-
условиях помех, представленный в [5]. Повышение помехозащищенности ГСН обеспечива-
3 4 4

