Page 21 - E-Modul Himpunan
P. 21
A ∪ (B ∪ C) = {p, q, r, s} ∪ {q, r, s, t}
A ∪ (B ∪ C) = {p, q, r, s, t}
Dengan demikian, dapat ditunjukkan bahwa (A ∪ B) ∪ C = A ∪ (B ∪ C).
E. Sifat Distributif
Sifat distributif pada operasi himpunan hanya berlaku pada operasi irisan
dan gabungan, yaitu A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) dan A ∪ (B ∩ C)
= (A ∪ B) ∩ (A ∪ C).
Contoh:
Diketahui himpunan A = {1, 2, 3, 4, ..., 10}, B = {2, 4, 6, 8, 10} dan C =
{1, 3, 5, 7, 9}. Tunjukkan bahwa A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
Penyelesaian:
Langkah pertama, tentukan hasil dari A ∩ (B ∪ C).
A ∩ (B ∪ C) = {1, 2, 3, 4, ..., 10} ∩ ({2, 4, 6, 8, 10} ∪ {1, 3, 5, 7, 9})
A ∩ (B ∪ C) = {1, 2, 3, 4, ..., 10} ∩ {1, 2, 3, 4, ..., 10}
A ∩ (B ∪ C) = {1, 2, 3, 4, ..., 10}
Langkah kedua tentukan hasil dari (A ∩ B) ∪ (A ∩ C).
(A ∩ B) = {1, 2, 3, 4, ..., 10} ∩ {2, 4, 6, 8, 10}
(A ∩ B) = {2, 4, 6, 8, 10}
(A ∩ C) = {1, 2, 3, 4, ..., 10} ∩ {1, 3, 5, 7, 9}
(A ∩ C) = {1, 3, 5, 7, 9}
(A ∩ B) ∪ (A ∩ C) = {2, 4, 6, 8, 10} ∪ {1, 3, 5, 7, 9}
(A ∩ B) ∪ (A ∩ C) = {1, 2, 3, 4, ..., 10}
Dengan membandingkan hasil akhir langkah pertama dan kedua, dapat
ditunjukkan bahwa A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ B).
15 | H I M P U N A N