Page 23 - E Modul Vektor
P. 23
Modul Matematika Peminatan X
Panjang sebuah vektor adalah jarak dari titik pangkal ke titik ujung vektornya. Secara aljabar,
titik pangkal vektor dalam titik ujung vektor dalam bentuk koordinat baik dalam dimensi dua
maupun dalam dimensi tiga. Panjang vektor dapat ditentukan dengan menggunakan rumus
jarak dua titik.
Pada dimensi dua, misalkan vektor = ( , ), maka panjang vektor:
1
2
2
= | | = √ 1 2 + .
2
Pada dimensi tiga, misalkan vektor = ( , ), maka panjang vektor:
2, 3
1
2
= | | = √ 1 2 + 2 2 + .
3
⃗⃗⃗⃗⃗
Apabila terdapat titik ( , ) dan titik ( , ), maka panjang vektor adalah :
1
2
1
2
⃗⃗⃗⃗⃗
| | = √( − ) + ( − ) .
2
2
1
1
1
2
⃗⃗⃗⃗⃗
Pada dimensi tiga jika titik ( , , ) dan titik ( , , ), maka panjang vektor
3
2
1
2
3
1
⃗⃗⃗⃗⃗
adalah | | = √( − ) + ( − ) + ( − ) .
2
2
2
1
2
1
2
1
1
3. LATIHAN SOAL
Contoh
Soal
⃗⃗⃗⃗⃗
Hitunglah panjang vektor dengan (0, 0, 1) dan (1, 1, 2) !
Jawab
= −
⃗⃗⃗⃗⃗
1 0
= (1) − (0)
⃗⃗⃗⃗⃗
2 1
1
= (1)
⃗⃗⃗⃗⃗
1
⃗⃗⃗⃗⃗
| | = √1 + 1 + 1
2
2
2
⃗⃗⃗⃗⃗
| | = √3
Soal
21