Page 179 - Understanding Machine Learning
P. 179

14.4 Variants  161


                           SGD for minimizing a λ-strongly convex function
                       Goal: Solve min w∈H f (w)
                       parameter: T
                       initialize: w (1)  = 0
                       for t = 1,...,T
                                                                   (t)
                                                          (t)
                         Choose a random vector v t s.t. E[v t |w ] ∈ ∂ f (w )
                         Set η t = 1/(λt)
                                1
                         Set w (t+ )  (t)  − η t v t
                                2 = w
                                                      1
                         Set w (t+1)  = argmin w∈H  w − w (t+ ) 2
                                                      2
                                  1    T  (t)
                       output: ¯ w =     w
                                  T   t=1
                                                                       2    2
              Theorem 14.11. Assume that f is λ-strongly convex and that E[ v t   ] ≤ ρ .Let w ∈
              argmin    f (w) be an optimal solution. Then,
                    w∈H
                                                   ρ 2

                                 E[ f ( ¯ w)] − f (w ) ≤  (1 + log(T )).
                                                  2λT
                         (t)       (t)                            (t)
              Proof. Let ∇  = E[v t |w ]. Since f is strongly convex and ∇  is in the subgradient
              set of f at w (t)  we have that
                                      (t)
                                                                       2
                                                (t)

                                                            λ

                            w (t)  − w , ∇  ≥ f (w ) − f (w ) +  w (t)  − w   .  (14.11)
                                                            2
              Next, we show that
                                                  2
                                                                2
                                      E[ w (t)  − w   −⊂w (t+1)  − w   ]  η t  2
                                (t)
                      (t)

                     w   − w , ∇  ≤                               +   ρ .      (14.12)
                                                  2η t              2
                                             1
                                                                                  1
                                             2 onto H,and w ∈ H we have that  w
              Since w (t+1)  is the projection of w (t+ )                      (t+ )
                                                                                  2 −
                 2
                                2
              w   ≥√w (t+1)  − w   . Therefore,
                                                                    1
                                 2
                                               2
                                                            2
                        w (t)  − w   −⊂w (t+1)  − w   ≥√w (t)  − w   −⊂w (t+ )    2
                                                                    2 − w
                                                                     2
                                                                         2

                                                 = 2η t  w (t)  − w , v t  − η  v t   .
                                                                    t
                                                                                  2
              Taking expectation of both sides, rearranging, and using the assumption E[ v t   ] ≤
               2
              ρ yield Equation (14.12). Comparing Equation (14.11) and Equation (14.12)and
              summing over t we obtain
                  T
                           (t)
                    (E[ f (w )] − f (w ))
                 t=1

                          T     (t)     2    (t+1)    2                       T
                               w  − w   −⊂w      − w                      ρ  2
                                                                    2
                                                         λ
                    ≤ E                                −  w  (t)  − w    +      η t .
                                                         2
                                         2η t                              2
                         t=1                                                 t=1
              Next, we use the definition η t = 1/(λt) and note that the first sum on the right-hand
                                                          2
              side of the equation collapses to −λT  w (T +1)  − w   ≤ 0. Thus,
                           T                         T       2
                                                  ρ  2    1  ρ
                                    (t)
                             (E[ f (w )] − f (w )) ≤     ≤    (1 + log(T )).
                                                  2λ    t   2λ
                          t=1                        t=1
   174   175   176   177   178   179   180   181   182   183   184