Page 110 - Fiber Optic Communications Fund
P. 110
Optical Fiber Transmission 91
2.12 The outputs of CW lasers of frequencies 193.5 THz and 193.6 THz are transmitted over a fiber of
length 2 km. It is found that the lower-frequency optical wave arrived later than the higher-frequency
component by 6 ps. Calculate the dispersion coefficient .
2
2
(Ans: −4.77 ps /km.)
2.13 A fiber-optic link consists of a TF followed by a DCF of length 5 km. The transmission fiber has a dis-
persion parameter D = 10 ps/nm/km, loss = 0.25 dB/km, and length = 50 km. (a) Find the dispersion
parameter of the DCF such that the pulse width (FWHM) at the output of the DCF is the same as the
pulse width at the input of the TF. (b) The power launched into the TF is 2 mW and the power at the
output of the DCF is −12 dBm. Find the loss coefficient of the DCF in dB/km.
(Ans: (a) −100 ps/nm/km; (b) 0.5 dB/km.)
Further Reading
K. Okamoto, Fundamentals of Optical Waveguide, 2nd edn. Academic Press, New York, 2006.
T. Okoshi, Optical Fibers. Academic Press, San Diego, CA, 1982.
L.B. Jeunhomme, Single-mode Fiber Optics, 2nd edn. Marcel Dekker, New York, 1990.
E.G. Neumann, Single-mode Fibers, Springer-Verlag, New York, 1988.
A.W. Snyder and J.D. Love, Optical Waveguide Theory. Chapman & Hall, London, 1983.
J.M. Senior, Optical Fiber Communications, 2nd edn. Prentice-Hall, London, 1992.
H. Kolimbris, Fiber Optic Communications. Prentice-Hall, Englewood Cliffs, NJ, 2004.
R.P. Khare, Fiber Optics and Optoelectronics. Oxford University Press, New York, 2004.
References
[1] C.K. Kao and G.A. Hockham, Proc. IEE, vol. 113, p. 1151, 1966.
[2] R.D. Maurer, D.B. Keck, and P. Schultz, Optical waveguide fibers. US patent no. 3,711,262, 1973.
[3] T. Miya, Y. Terunuma, T. Husaka, and T. Miyoshita, Electron. Lett.,vol. 15, p. 106, 1979.
[4] J. Gower, Optical Communication Systems, 2nd edn. Prentice-Hall, London, 1993.
[5] G.P. Agrawal, Fiber-Optic Communication Systems, 4th edn. John Wiley & Sons, New York, 2010.
[6] D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd edn. Academic Press, New York, 1991.
[7] J.A. Buck, Fundamentals of Optical Fibers, 2nd edn. John Wiley & Sons, Hoboken, NJ, 2004.
[8] A. Ghatak and K. Thyagarajan, Optical Electronics. Cambridge University Press, Cambridge, 1991.
[9] D. Gloge, “Weakly guiding fibers,” Appl. Opt.,vol. 10, p. 2252, 1971.
[10] D. Marcuse, D. Gloge, and E.A.J. Marcatili, “Guiding properties of fibers.” In S.E. Miller and A.G. Chynoweth
(eds), Optical Fiber Telecommunications. Academic Press, New York, 1979.
[11] A.W. Snyder, IEEE Trans. Microwave Theory Tech.,vol. MTT-17, p. 1130, 1969.
[12] G. Keiser, Optical Fiber Communications, 4th edn. McGraw-Hill, New York, 2011.
[13] R.M. Gagliardi and S. Karp, Optical Communications, 2nd edn. John Wiley & Sons, New York, 1995.
[14] Communication News, March 2006. Nelson Publishing, www.comnews.com.
[15] R. Ryf et al., J. Lightwave Technol.,vol. 30, p. 521, 2012.
[16] X. Chen et al., Opt. Exp.,vol. 20, p. 14302, 2012.
[17] B. Neng et al., Opt. Exp.,vol. 20, p. 2668, 2012.
[18] N. Hanzawa et al., Optical Fiber Conference, paper OWA4, 2012.
[19] H.S. Chen, H.P.A. van den Boom, and A.M.J. Koonen, IEEE Photon. Technol. Lett.,vol. 23, 2011.
[20] R.P. Feynmann, R.B. Leighton, and M. Sands, The Feyman Lectures on physics,vol. 1, chapter 32. Addison-Wesley,
New York, 1963.