Page 13 - E-Modul Olga Rosalinda Deret & Bilangan
P. 13
2. Deret Geometri
Seperti halnya deret aritmetika, bahwa suatu deret geometri adalah jumlah
suku-suku dari suatu barisan geometri (definisi). Jika barisan geometrinya
dinyatakan dalam bentuk baku, yaitu
2
3
n - 1
a, ar, ar , ar , …, ar
Maka deret geometrinya adalah
2
3
n – 1
a + ar + ar , ar + … + ar
Misalkan Jn (Sn) adalah notasi yang kita pakai untuk menyatakan jumlah n
suku pertama suatu barisan geometri, maka
3
n – 1
2
Jn = a + ar + ar + ar + … + ar
n – 1
n
2
3
r Jn = ar + ar + ar + … + ar + ar -
n
(1 – r) Jn = a - ar
n
a ar
Jn =
1 r
n
a(1 r )
Jn = , (r 1)
1 r
n
a(r 1)
Jn = , berlaku jika r > 1.
r 1
Bentuk terakhir ini sering pula disebut rumus untuk jumlah n suku pertama deret
geometri.
Contoh
Carilah jumlah tujuh buah suku dari deret geometri
4 + 2 + 1 + 0,5 + …
Penyelesaian:
2 1
Di sini, a = 4, r = dan n = 7
4 2
n
a(1 r )
Jn =
1 r
12