Page 140 - FUNDAMENTALS OF COMPUTER
P. 140

NPP













                   140                         Fundamentals of Computers                           NPP


                   Number System                              g§»`m nÕ{V
                      "A number system uses r distinct symbols    “EH$ g§»`m nÕ{V _| r {d{dY g§Ho$Vm| H$m Cn`moJ
                  to represent r digits".
                                                              {H$`m OmVm h¡, {OÝh| r A§H$ H$hVo h¢ Ÿ&''
                   3.1 Base (Radix)                           3.1 AmYma
                      The total number of distinct symbols used   {H$gr g§»`m nÕ{V _| Hw$b A§H$m| H$s g§»`m H$mo
                  by a number system is called its Base or Radix.  CgH$m AmYma H$hVo h¢ Ÿ& CXmhaUV… Xe_bd g§»`m
                  For example our decimal number system uses  nÕ{V _| ZrMo Xem©`o g§Ho$V (A§H$) Cn`moJ _| bmE OmVo h¢…
                  following distinct symbols :
                                                  0, 1, 2, 3, 4, 5, 6, 7, 8, 9
                      Therefore decimal number system is a Base   Bg{bE Xe_bd g§»`m nÕ{V H$m AmYma 10 h¡ Ÿ&
                  10 number  system.  In every number system,  àË`oH$ g§»`m nÕ{V _| A§H$m| H$s H${‹S>`m| go hr g§»`mE±
                  the numbers are formed by string of digits. To  ~ZVr h¢& {H$gr g§»`m H$m _mZ g_PZo Ho$ {bE CgHo$
                  inteprete any number we must multiply each
                  digit  by some positive  or negative   integer  àË`oH$ A§H$ H$mo AmYma r H$s Hw$N> YZmË_H$ `m F$UmË_H$
                  power of r and add, for example 213.547 can be  KmV go JwUm H$aHo$ g^r H$mo Omo‹S>Zm hmoVm h¡ Ÿ& O¡go 213.547
                  interpreted as :                            H$mo Bg Vah go {bI gH$Vo h¢ Ÿ:
                                                    1
                                           2
                                                                             -2
                                                                    -1
                                                            0
                                      2 × 10  + 1 × 10  + 3 × 10  + 5 × 10  + 4 × 10  + 7 × 10 -3
                      It means 2 hundreds, plus 1 tens, plus  3   Bggo VmËn`© h¡, 3 BH$mB© , 1 XhmB© Am¡a 2 g¡H$‹S>m
                  units plus 5 tenths, plus  4 hundredth plus 7  VWm 5 Xjm§e, 4 gm¢ do ^mJ VWm 7 hOmad| ^mJ Ÿ& g§{já
                  thousandth. The shortcut  here is move away  _| BgH$mo Bg Vah go `mX aI gH$Vo h¢ : h_oem Xe_bd
                  from  the decimal point.  In  integer part start
                  from a  zero power and  increment by  one as  q~Xw go Xya OmAm| Ÿ& nyUmªH$ _| KmV eyÝ` go  ewê$ H$aHo$
                  you move from one digit to another. In fractional  EH$-EH$ ~‹T>mVo OmAmo Ÿ& AnyUmªH$ _| KmV -1 go ewê$ H$a
                  part start from –1 and increment by one as you  EH$-EH$ go ~‹T>mVo OmAmo Ÿ& O¡go -1, -2, -3, Am{X Ÿ&
                  move from one digit to another. The  following  ZrMo ~ZmE {MÌ H$mo `mX aImo:
                  diagram will  help you remember the trick :

                                       2      1      3      .       5      4      7
                                       10 2   10 1   10 0           10 –1  10 –2  10 –3
                   3.2 Binary Number System                   3.2 ~mBZar Zå~a {gñQ>_

                      This number system uses only two distinct   Bg g§»`m nÕ{V _| {g\©$ Xmo g§Ho$Vm| 0 Ed§ 1 H$m
                  symbols '0' and '1'. Therefore base (Radix) of  Cn`moJ {H$`m OmVm h¡ Ÿ& Bgr{bE Bg nÕ{V H$m AmYma 2
                  this number system is 2. The internal Circuit  h¡ Ÿ& H$åß`yQ>a Ho$ n[anW _| ~mBZar nÕ{V H$m Cn`moJ hmoVm
                  of the computer normally uses binary number
                  system. The  symbols '0' and '1' are called  h¡Ÿ& 0 Am¡a 1 H$mo ~mBZar {S>{OQ> ({~Q>) H$hVo h¢ Ÿ& O¡go,
                  Binary Digits   (Bits).  Thus, 1001  is  a 4-bit  1001 EH$ 4-{~Q> ~mBZar g§»`m h¡ Ÿ& BgH$m ^ma Bg Vah
                  binary  number. The interpretation  of this  go {ZH$mbm Om gH$Vm h¡ :
                  number is as:
                                             1 × 2  + 0 × 2  + 0 × 2  + 1 × 2  = 9
                                                                        0
                                                         2
                                                  3
                                                                1
   135   136   137   138   139   140   141   142   143   144   145