Page 142 - FUNDAMENTALS OF COMPUTER
P. 142

NPP













                   142                         Fundamentals of Computers                           NPP


                   3.3 Octal Number System                    3.3 Am°ŠQ>b Zå~a {gñQ>_
                      Octal number system uses eight distinct     Am°ŠQ>b nÕ{V _| Hw$b AmR> {d{^ÝZ àH$ma Ho$ g§Ho$Vm|
                  symbols, 0, 1, 2, 3, 4, 5, 6, 7. The base of this  H$m Cn`moJ hmoVm h¡Ÿ& `o AmŠQ>b A§H$ H$hbmVo h¢ Ÿ& `o h¢,
                  number system is 8. Any octal number  can be  0, 1, 2, 3, 4, 5, 6, 7& Bgr{bE Am°ŠQ>b g§»`m nÕ{V
                  interpreted by multiplying the octal digit by  H$m AmYma (~og) 8 h¡ Ÿ& {H$gr ^r Am°ŠQ>b g§§»`m Ho$ _mZ
                  its positional weight and adding all such   H$mo g_PZo hoVw BgHo$ {d{^ÝZ A§H$m| H$mo AmR> H$s {d{^ÝZ
                  products.  For example  (431.62)  can be    KmVm| go JwUm H$aVo h¢ VWm Eogo àmá gmao JwUZ\$bm| H$mo
                                                   8
                  interpreted as:                             Omo‹S>Vo h¢ Ÿ& CXmhaU Ho$ {bE, (431.62)  H$mo h_ Bg
                                                               Vah go g_P gH$Vo h¢…          8
                                               2
                                           4 × 8  + 3 × 8  + 1 × 8  + 6 × 8  + 2 × 8 -2
                                                       1
                                                              0
                                                                     -1
                      while performing Conversion  from  octal    O~ h_ Am°ŠQ>b g§»`m `o ~mBZar g§»`m àmá H$aZo
                  to Binary it  is important  to  memorise 3-bit  H$s H$mo{ee H$aVo h¢ VWm h_|  àË`oH$ Am°ŠQ>b A§H$ Ho$ 3-
                  binary  equivalent of each octal digit. You are  {~Q> ~mBZar Vwë` H$s Amdí`H$Vm n‹S>Vr h¡ Ÿ& AV… Vm{cH$m
                  advised to  memorise the following table 3.2:
                                                              3.2 H$mo AÀN>r Vah go  `mX H$a boZm Mm{hE Ÿ&
                                                         Table 3.2
                                           Octal digit             3 bit Binary Equivalent
                                                0                      000
                                                1                      001
                                                2                      010
                                                3                      011
                                                4                      100
                                                5                      101
                                                6                      110
                                                7                      111
                      It  is very important to learn the counting  {H$gr ^r g§»`m nÕ{V _| JUZm H$m ~hþV _hËd h¡ Ÿ&
                  sequence in a number system. There is no 8 after
                  7  in octal number system.  Because 8 is not  a  Am°ŠQ>b g§»`m nÕ{V _| eyÝ` go  7 VH$ {bIVo h¢Ÿ& BgHo$
                  symbol used by octal number system. Then what  ~mX 8 Zht {bI gH$Vo Š`m|{H$ Bg Vah H$m H$moB© g§Ho$V
                  is the next number after 7? It is 10. How? Because
                  7 is the greatest number of single digit.  The  next  Am°ŠQ>b _| Zht hmoVm Ÿ& AV… h_ 8 Ho$ ~OmE  0 {bIVo
                  digit  will be the smallest digit, that  is '0'  h¢ Am¡a EH$ hm{gb boVo h¢ Ÿ& AV… AJbr g§»`m 10 hmoJrŸ&
                  generating a carry to the left. After  10 the next
                  number is 11, then 12 and so on.            BgHo$ ~mX 11, 12, Am{X Ÿ&
                      What is the next number after 17 ? It is 20  àíZ CR>Vm h¡ {H$ Am°ŠQ>b _| 17 Ho$ ~mX Š`m ?
                  because the  next digit after 7 is    '0' and add  BgH$m CÎma h¡, 20 Š`m|{H$ 7 Ho$ ~mX eyÝ` {bIZm  hmoJm
                  carry to  '1'. Thus  first few  numbers of octal
                  number system can be written as:            Am¡a EH$ hm{gb H$m boZm hmoJm Ÿ& Bgr Vah go Am°ŠQ>b
                                                              g§»`m nÕ{V Ho$ àW_ Hw$N> Zå~a ZrMo Xem©E JE h¢…
   137   138   139   140   141   142   143   144   145   146   147