Page 147 - FUNDAMENTALS OF COMPUTER
P. 147

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              147


                                                       (a) .75       (b) .84
                  Solution:
                      (a)                    Product                   Integer  Part
                                             .75 × 2  = 1.50              1
                                             .50 × 2  = 1.00              1

                                             00
                      Now read the Integer Parts downward and     A~ nyUmªH$m| D$na go ZrMo n‹T>mo Ÿ& AV… (.11)  =
                                                                                                     2
                  put a leading point. Thus : (.11)  = (.75) 10  (.75) 10
                                               2
                      (b) Apply the same procedure :              (b)  Cnamoº$ {d{Y AZwgma
                                                      Product         Integer Part
                                            .84 × 2   = 1.68              1
                                            .68 × 2   = 1.36              1
                                            .36 × 2   = 0.72              0
                                            .72 × 2   = 1.44              1
                                            .44 × 2   = 0.88              0
                                            .88 × 2   = 1.76              1
                                            .76 × 2   = 1.52              1
                      It is clear from the example that the division  Bg CXmhaU go ñnîQ> h¡ {H$ AnyUmªH$m| H$s pñW{V _|
                  may terminate after a long time or it may not  à{H«$`m ~hþV Xoa VH$ Mb gH$Vr h¡ `m Vmo BgH$m A§V Zht
                  terminate. Here we can approximate the  result  àmá {H$`m Om gH$Vm h¡ Ÿ& Bg pñW{V _| h_| gÝZrH$Q>Z
                  up to few places of binary point. Suppose we
                  want to  approximate the result up  to   four  H$aZm hmoJm Ÿ& ~mBZar _| _mZm {H$ {g\©$ Mma A§H$m| VH$ hr
                  places of binary  point, the  result can be  CÎma {bIZm h¡, V~ h_ nyUmªH$ H$mo D$na go ZrMo n‹T>H$a
                  obtained  by reading  the  integer parts    {bI gH$Vo h¢ {H$ …
                  downward.
                                                       (.1101)  = (.84) 10
                                                             2
                      If a mixed number is given containing both  `{X EH$ {_{lV Xe_bd g§»`m Xr JB© hmo Vmo g§nyU©
                  Integer and fractional  parts,  we will  have to  g_ñ`m Xmo {hñgm| _| {d^m{OV H$aZm hmoJm Ÿ& nyUmªH$ H$m
                  divide the whole problem in two parts; integer  n[adV©Z AbJ VWm AnyUmªH$ H$m n[adV©Z AbJ H$aZm
                  and fractional. Consider the problem shown in
                  the example below:                          hmoJm Ÿ& ZrMo {bIr g_ñ`m H$mo g_Pmo…
                       Problem 3.7                                 àíZ 3.7
                      Find the Binary equivalent for the decimal  Xe_bd  g§»`m 24.36  hoVw ~mBZar g§»`m àmá
                  number 24.36.                               H$amoŸ&

                  Solution:                                   hc:
                      The given number  is  24.36.  The integer   Xr JB© {_{lV g§»`m 24.36 h¡ Ÿ& Bg_| 24 nyUmªH$
                  part is 24. Its binary equivalent can be obtained  h¡Ÿ& BgH$m ~mBZar Vwë` Bg àH$ma go àmá {H$`m Om
                  as below:
                                                              gH$Vm h¡Ÿ&
   142   143   144   145   146   147   148   149   150   151   152