Page 146 - FUNDAMENTALS OF COMPUTER
P. 146

NPP













                   146                         Fundamentals of Computers                           NPP


                      The generalised procedure shown in the      Omo {d{Y Q>o~b _| Xem©B© JB© h¡, BgH$m Cn`moJ r Ho$
                  table can be applied to one of the following  {d{^ÝZ _mZm| Ho$ {bE ZrMo {bIo H$ÝdO©Z H$aZo hoVw {H$`m
                  conversions:
                                                              OmVm h¡…
                      Decimal to Binary (r = 2), to octal (r = 8),  to  Xe_bd go ~mBZar (r = 2) , go Am°ŠQ>b (r = 8), go
                  Hexadecimal (r = 16)
                                                              hoŠgmS>o{g_b (r = 16)
                      Consider the above conversion one by one    A~ h_ BÝh| EH$ - EH$ H$aHo$ CXmhaUm| H$s ghm`Vm
                  with examples.
                                                              go g_P|Jo Ÿ&
                  Decimal to Binary Conversion                Xe_bd go ~mBZar H$ÝdO©Z

                      The base of the Binary number system is     `{X nyUmªH$ Xe_bd g§»`m Xr JB© h¡ VWm Bgo ~mBZar
                  2. Therefore for integer part of decimal number,  _| ~XbZm h¡ Vmo h_ Bgo 2 go ^mJ X|Jo Ÿ& eof\$bm|  H$mo
                  we have to divide it by 2, write remainder and
                  read  the remainders upward, when  the      grYo hmW H$s Va\$ {bI|Jo Ÿ& Eogm V~ VH$ H$a|Jo V~ VH$
                  quotient becomes zero. This can be easily ex-  {H$ ^mJ\$b eyÝ` Zht hmo OmVm Ÿ& A§V _| eof\$bm|  H$mo
                  plained by taking an example:               ZrMo go D$na n‹T>H$a ~mBZar g§»`m àmá H$a|Jo Ÿ& Bgo h_
                                                              EH$ CXmhaU boH$a g_PVo h¢ …
                       Problem 3.5                                 àíZ 3.5
                      Convert decimal 14 into Binary Number.      Xe_bd g§»`m 14 H$mo ~mBZar g§»`m _| ~Xbmo

                  Solution :                                  hc :
                      Apply the procedure shown in the table      Vm{cH$m 3.4 Xem©B© JB© {d{Y H$m Cn`moJ H$aZo na
                  3.4 divide by 2, write  Remainders :        14 H$mo Xmo go ^mJ Xmo Am¡a eof\$b {bImo …

                                                          2  14  0
                                                          2  7  1
                                                          2  3  1
                                                          2  1  1
                                                             0
                      Now read all the remainders upward. We      A~ eof\$bm| H$mo ZrMo go D$na n‹T>mo Ÿ& h_| 1110
                  get, 1110. This is the desired  binary number.  àmßV hþAm h¡Ÿ& `h dm§{N>V ~m`Zar g§»`m h¡Ÿ& AV… h_
                  Thus we can write:  (14)  = (1110) 2        {bI gH$Vo h¢ … (14)  = (1110) 2
                                        10
                                                                             10
                      For fraction parts we have to multiply the  Am§{eH$ {hñgo hoVw h_| 2 go JwUm H$aZm hmoJm Ÿ& nyUmªH$
                  given decimal number by 2, write the integer  dmbo {hñgo H$mo grYo hmW H$s Va\$ {bIZm hmoJm VWm A§V
                  part in the right side and read downward. This
                  can be easily explained by an example :     _| nyUmªH$m| H$mo D$na go ZrMo n‹T>Zm hmoJm Ÿ& Bgo h_ EH$
                                                              CXmhaU H$s ghm`Vm go AmgmZr go g_P  gH$Vo h¢Ÿ&
                       Problem 3.6                                 àíZ 3.6
                      Convert following decimal  numbers into     Xe_bd g§»`mAm| H$mo ~mBZar _| ~Xbmo&
                  binary
   141   142   143   144   145   146   147   148   149   150   151