Page 151 - FUNDAMENTALS OF COMPUTER
P. 151

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              151


                      Integer Part                                nyUmªH$

                                                         16  49  1
                                                         16  3  3
                                                             0
                      Thus,                            (49)  = (31)
                                                          10     16
                      Fractional part                             AnyUmªH$
                                               .31 × 16 = 4.96      4
                                               .96 × 16 = 15.36     F
                                .              36 × 16 = 5.76       5
                      Thus                           (.31)  = (.4 F 5) 16
                                                         10
                      Combining both the results :                XmoZm| ^mJm| Ho$ n[aUm_m| H$mo {_bmZo na …
                                                   (49.31)  =  (31.4 F 5) 16
                                                        10
                  Some  More Conversions                      Hw$N> Am¡a H$ÝdO©Z
                      Refer to the table 3.4. There is a procedure  Vm{cH$m 3.4 H$m AdbmoH$Z H$aZo go kmV hmoVm h¡
                  for conversion  of integer  decimal into   any
                  base number and a procedure for the fractional  {H$ Xe_bd g§»`m H$mo {H$gr ^r AmYma r _| ~Xb gH$Vo
                  part also.  Now  consider  the problem  given  h¢ Ÿ& A^r VH$ h_Z| r Ho$ Ho$db VrZ _mZm| 2, 8, 16 hoVw
                  below:                                      H$ÝdO©Z {H$`m Ÿ& d¡go h_ r Ho$ {H$gr ^r _mZ Ho$ {bE Bgr
                                                              H$m à`moJ  H$a|Jo& ZrMo Xr JB© g_ñ`mAm| go `h ñnï> h¡ …
                       Problem 3.10                                àíZ 3.10

                      Convert decimal number 25 into a number     Xe_bd g§»`m 25 H$mo EH$ Eogr g§»`m _| ~Xbm|,
                  whose  base is 3.
                                                              {OgH$m AmYma 3 h¡ Ÿ&
                  Solution :                                  hc :
                      Divide 25 by 3. Write remainders and read   25 H$mo 3 go ^mJ Xmo Ÿ& eof\$b {bImo d A§V _|
                  upward :                                    D$na n‹T>mo:

                                                         3  25  1
                                                         3  8  2
                                                         3  2  2
                                                            0

                      Thus the result can be written as :          AV… h_ {bI gH$Vo h¢ {H$ …
                                                      (25)  = (221) 3
                                                          10
                       Problem 3.11                                àíZ 3.11
                      Convert the following  decimal numbers      ZrMo Xr JB© g§»`mAm| H$mo CZHo$ gm_Zo Xem©E AmYmam|
                  into indicated bases :                      _| ~Xbmo …

                                       (a)  (46.31 ) 10  → (  )  (b)  (82.24 ) 10  → (  ) 7
                                                           4
   146   147   148   149   150   151   152   153   154   155   156