Page 154 - FUNDAMENTALS OF COMPUTER
P. 154

NPP













                   154                         Fundamentals of Computers                           NPP


                                             1       1       0      1
                                             x       x       x      x
                                             2 3    2 2     2 1     2 0
                                             8   +   4   +   0  +   1 =  13
                      Thus,                           (1101)  = (13) 10
                                                           2
                      (b) The  given Binary  Number is  101.11.   (b) Xr JB© ~mBZar g§»`m 101.11 h¢ Ÿ& BgH$s {~Q>m|
                  Write the bits and the Binary point giving some  d q~Xw H$mo Wmo‹S>r Xya-Xya {bI H$a ZrMo {MÌ _| Xem©E
                  space.
                                                              AZwgma hb H$amoŸ&
                                                 1   0   1   .   1   1
                                                 2 2   2 1  2 0  2 -1  2 -2
                      The decimal equivalent can be calculated    Xe_bd Vwë` H$s JUZm Bg àH$ma go H$s Om gH$Vr
                  as below :
                                                              h¡ …
                                        = 1 × 2  + 0 × 2  + 1 × 2  + 1 × 2   + 1 × 2 -2
                                                     1
                                                            0
                                                                    -1
                                              2
                                        = 4 + 0 + 1 + .5 + .25
                                        = 5.75
                       Thus,                        (101.11)  = (5.75) 10
                                                           2
                      (c) The given Binary number is 101011 write  (c) Xr JB© ~mBZar g§»`m 101011 h¡ Ÿ& BgH$s
                  the  bits and their positional weights below it:
                                                              {~Q>m| d ^mam| H$mo ZrMo Xem©E AZwgma {bImoŸ&
                                        1      0      1      0      1       1
                                        2 5    2 4    2 3    2 2    2 1     2 0
                                       32   +  0 +    8   +  0   +     2   +     1  =   43
                      Thus,                          (101011)  = (43) 10
                                                            2
                  Octal to Decimal Conversion                 Am°ŠQ>b go Xe_bd _| n[adV©Z
                      The Base  of octal  number system is 8.     Am°ŠQ>b H$m AmYma 8 h¡ Ÿ& AV… gmar JUZmE± 8
                  Therefore all the  calculations   are performed
                  with 8. The following  example illustrates the  H$mo boH$a H$s OmE§Jr Ÿ& ZrMo Xem©E CXmhaUm| go `o ñnï>
                  procedure :                                 hmoJm…
                       Problem 3.13                                àíZ 3.13
                      Convert following Octal number into Decimal :  Am°ŠQ>c go Xe_bd _| ~Xbmo …
                  Solution :                                  hc :
                      (a) The given  octal number  is (27) . The  (a)  Am°ŠQ>b g§»`m (27)  H$m Xe_bd Bg àH$ma
                                                      8
                  decimal equivalent can be calculated as  below:  go àmá {H$`m Om gH$Vm h¡:  8
                                                 2                    7
                                                 x                    x
                                                8 1                  8 0
                                                16          +         7     = 23
                      Thus,                            (27)  = (23) 10
                                                          8
   149   150   151   152   153   154   155   156   157   158   159