Page 159 - FUNDAMENTALS OF COMPUTER
P. 159

NPP               Number System, Boolean Algebra and Logic Circuits              159


                      Now put the equivalent octal digit for each  A~ àË`oH$ g_yh Ho$ ñWmZ na CgH$m Am°ŠQ>b A§H$
                  group :                                     {bIZo na Omo g§»`m àmá hmoVr  h¡,

                      Thus the result is  (32) 8                  `hr n[aUm_ h¡ …(32) 8
                      Note : Memorise table 3.2                   ZmoQ >… Vm{cH$m 3.2 H$mo AÀN>r Vah go `mX H$a b|Ÿ&
                      But in  case of fractional  Binary numbers  bo{H$Z nyU©V… Am§{eH$ g§»`mAm| H$s pñW{V _| h_
                  start from  left and put trailing zeros.  For  ~m§E hmW H$s Va\$ go ewê$ H$aVo h¢ Ÿ& A§V _| `{X VrZ {~Q>
                  example,  the  Binary number  0.11010 can be  Zht ~ZVo h¢ Vmo nrN>o Amoa eyÝ` bJm gH$ Vo h¢ Ÿ& CXmhaUV…
                  converted to octal as:
                                                              ~mBZar g§»`m 0.11010 H$mo Am°ŠQ>b _| Bg Vah ^r
                                                              n[ad{V©V H$a gH$Vo h¢ …
                                                      0. 110 100 =  (0.64 ) 8

                      Consider few more problems for Binary to    A~ {d{Y II H$s ghm`Vm go Hw$N> ~mBZar g§»`mAm|
                  octal conversion using Direct method:
                                                              H$mo Am°ŠQ>b _| ~XbVo h¢ …
                       Problem 3.17   NPP                          àíZ 3.17
                      Convert following Binary Numbers into       ZrMo Xr  JB©  ~mBZar g§»`mAm| H$mo  Am°ŠQ>b _|
                  their octal equivalent :                    n[ad{V©V H$amo…

                                  (a) 101011      (b) 11001       (c) 0.111011    (d) 1101.0101
                  Solution :                                  hc :
                      (a) Start from right and  make groups  by   (a) grYo hmW H$s Va\$  go VrZ-VrZ  Ho$ g_yh
                  three bits :
                                                              ~ZmAmo Ÿ&
                                                         101 011
                      put octal equivalent for each group.        àË`oH$ g_yh Ho$ ñWmZ na Am°ŠQ>b A§H$ aIZo na
                      Thus,                          (101011)  = (53) 8
                                                             2
                      (b) The given binary number is 11001, start  (b)grYo hmW go Mbmo Am¡a VrZ-VrZ {~Q²> Ho$ g_yh
                  from right and put one leading zero as shown  ~ZmAmo& Bg hoVw EH$ eyÝ` AmJo Omo‹S>Zm hmoJmŸ&
                  below
                                                         011 001:
                      Putting octal equivalents:                  àË`oH$ g_yh Ho$ ñWmZ na Am°ŠQ>b A§H$ {bImo …
                                                      (11001)  = (31) 8
                                                            2
                      (c) The given binary number 0.111011 is a   (c)Bg g§»`m _| ~mE§ hmW H$s Amoa go ewê$ hmoH$a
                  purely fractional number. Therefore start from  VrZ-VrZ {~Q> Ho$ g_yh ~ZmAmo VWm CZHo$  Am°ŠQ>b A§H$
                  left and make groups of three bits and put their
                  octal equivalents :                         {bImo …
                                                    0.1110 11 = (0.73 ) 8
   154   155   156   157   158   159   160   161   162   163   164