Page 160 - FUNDAMENTALS OF COMPUTER
P. 160
NPP
160 Fundamentals of Computers NPP
(d) The given binary number is a mixed (d) Bg {_{lV g§»`m Ho$ nyUmªH$ _| XmE± go ~mE±
number. In the integer part of it start from VWm Am§{eH$ ^mJ _| ~mE± go XmE± Mbo d Am°ŠQ>b Vwë`
right and in the fractional part start from left to {bI|…
make groups of three bits and put octal
equivalents.
001 101. 010 100 = (15.24 ) 8
Octal to Binary Conversion Am°ŠQ>b go ~mBZar H$ÝdO©Z
Again there are two ways of converting Am°ŠQ>b go ~mBZar H$ÝdO©Z hoVw ^r Xmo {d{Y`m| H$m
octal number into Binary.
Cn`moJ {H$`m Om gH$Vm h¡ …
Method I: First covert into decimal and {d{Y I : nhbo Xe‘bd ‘| ~Xbmo Am¡a {’$a ~mBZar
then binary
‘|&
0
8 × 3 + 8 × 2 = (26) 10
1
2 26 0
2 13 1
2 6 0
2 3 1
2 1 1
0
Thus (26) = (110 10) = (32) or, (32) = (11010) 2
2
8
10
Method II : (Direct Method) This method {d{Y II : (àË`j {d{Y) `h {d{Y ~hþV hr gab
is very simple and straight forward. Just h¡Ÿ& BgHo$ {bE Q>o~b 3.2 H$s ghm`Vm go ha Am°ŠQ>b A§H$
remember the 3-bit binary equivalents of octal H$m 3-{~Q>m| _| ~mBZar Vwë` `mX aImo & ha Am°ŠQ>b A§H$
digits (Table 3.2). Put Binary equivalents at
every octal digit positions. This method is Ho$ ñWmZ na BgH$m 3-{~Q> _| ~mBZar Vwë` aImoŸ& nyUmªH$,
applicable to both integer, and fractional Am§{eH$ ^mJ Am¡a {_{lV g§»`m g^r Ho$ {b`o `h {d{Y
numbers. bmJy hmoVr h¡Ÿ&
Problem 3.18 àíZ 3.18
Convert following octal numbers into {ZåZ{b{IV Am°ŠQ>b g§»`mAm| H$mo ~mBZar _| {bImo…
Binary:
(a) 235 (b) 14.62 (c) 701.31
Solution : hc :
In each case put the Binary equivalents of àË`oH$ A§H$ Ho$ ñWmZ na 3-{~Q> ~mBZar aIZo na…
octal digits.
(a) (235 ) = (010 011 101 ) 2
8
(b) (14.62 ) = (001 100 .110010 ) 2
8
)
(c) (701.31 = (111 000 001. 011 001 ) 2
8