Page 160 - FUNDAMENTALS OF COMPUTER
P. 160

NPP













                   160                         Fundamentals of Computers                           NPP


                      (d) The given binary number  is a mixed     (d) Bg {_{lV g§»`m Ho$ nyUmªH$ _| XmE± go ~mE±
                  number.  In the integer  part of  it start  from  VWm Am§{eH$ ^mJ _| ~mE± go XmE± Mbo d Am°ŠQ>b Vwë`
                  right and in the fractional part start from left to  {bI|…
                  make groups  of three bits and put octal
                  equivalents.
                                                   001 101. 010 100 =  (15.24 ) 8

                  Octal to Binary Conversion                  Am°ŠQ>b go ~mBZar H$ÝdO©Z
                      Again there  are  two  ways of converting   Am°ŠQ>b go ~mBZar H$ÝdO©Z hoVw ^r Xmo {d{Y`m| H$m
                  octal number into Binary.
                                                              Cn`moJ {H$`m Om gH$Vm h¡ …
                      Method I:  First covert into  decimal and   {d{Y I :  nhbo Xe‘bd ‘| ~Xbmo Am¡a {’$a ~mBZar
                  then binary
                                                              ‘|&
                                                             0
                                                     8  × 3 + 8  × 2 = (26) 10
                                                      1
                                                         2  26  0
                                                         2  13  1
                                                         2  6  0
                                                         2  3  1
                                                         2  1  1
                                                            0
                      Thus               (26)  = (110 10)  = (32)  or, (32)  = (11010) 2
                                                        2

                                                                     8
                                             10
                      Method  II : (Direct Method) This method    {d{Y II :  (àË`j {d{Y) `h {d{Y ~hþV hr gab
                  is very simple and  straight   forward.  Just  h¡Ÿ& BgHo$ {bE Q>o~b 3.2 H$s ghm`Vm go ha Am°ŠQ>b A§H$
                  remember the 3-bit binary equivalents of octal  H$m 3-{~Q>m| _| ~mBZar Vwë` `mX aImo & ha Am°ŠQ>b A§H$
                  digits  (Table 3.2). Put  Binary equivalents at
                  every  octal digit  positions. This method   is  Ho$ ñWmZ na BgH$m 3-{~Q> _| ~mBZar Vwë` aImoŸ& nyUmªH$,
                  applicable to both  integer, and fractional  Am§{eH$ ^mJ Am¡a {_{lV g§»`m g^r Ho$ {b`o `h {d{Y
                  numbers.                                    bmJy hmoVr h¡Ÿ&
                       Problem 3.18                                àíZ 3.18
                      Convert   following  octal numbers  into    {ZåZ{b{IV Am°ŠQ>b g§»`mAm| H$mo ~mBZar _| {bImo…
                  Binary:
                                  (a) 235             (b) 14.62               (c) 701.31
                  Solution :                                  hc :
                      In each case put the  Binary equivalents of  àË`oH$ A§H$ Ho$ ñWmZ na 3-{~Q> ~mBZar aIZo na…
                  octal digits.
                                              (a)  (235 ) =  (010 011 101 ) 2
                                                      8
                                              (b)  (14.62 ) =  (001 100 .110010 ) 2
                                                        8
                                                        )
                                              (c)  (701.31 =  (111 000 001. 011 001 ) 2
                                                        8
   155   156   157   158   159   160   161   162   163   164   165