Page 164 - FUNDAMENTALS OF COMPUTER
P. 164
NPP
164 Fundamentals of Computers NPP
Thus, (.75) = (.11) 2
10
Combining both the results : XmoZm| ^mJm| Ho$ n[aUm_m| H$mo Amng _| {_bmZo na…
(125.75) = (1111101.11) 2
10
Now to convert the obtained binary A~ Bg ~mBZar H$mo hoŠgmS>o{g_b _| ~XbZo hoVw
number into hexadecimal make group of 4 - Mma-Mma {~Q>m| Ho$ g_yh ~ZmAmo …
bits as shown below :
(0111 1101 . 1100 ) 2
put hexadecimal digits in place of each A~ àË`oH$ g_yh Ho$ ñWmZ na CgH$m hoŠgmS>o{g_b
group : A§H$ {bImo…
(7D.C) 16
Thus, (125.75) = (7D.C) 16
10
(ii) The given decimal number 97.375 is a (ii) 97.375 Ho$ nyUmªH$ ^mJ H$mo ~mBZar _| ~Xbmo
mixed number. Consider integer part 97 to … {X`m J`m S>ogr_b Zå~a 97.375 EH$ {_{lV g§»`m h¡Ÿ&
convert it into binary.
nyUmªH$ ^mJ 97 H$mo ~`Zar _| n[ad{V©V H$aZo H$m {dMma H$a|Ÿ&
2 97 1
2 48 0
2 24 0
2 12 0
2 6 0
2 3 1
2 1 1
0
Thus, (1100001) = (97) 10
2
Now taking the fractional part : A~ Am§{eH$ ^mJ 0.375 H$mo ~mBZar _| ~Xbmo …
375 × 2 = .750 0
.750 × 2 = 1.500 1
.500 × 2 = 1.000 1
.000
Thus, (.375) = (.011) 2
10
Combining both the results : XmoZm| ^mJm| Ho$ n[aUm_m| H$mo {_bmZo na …
(97.375) = (1100001.011) 2
10
Now to convert Binary into hexadecimal A~ Mma-Mma {~Q>m| Ho$ g_yh ~ZmAmo…
make groups of 4 - bits :
0110 0001. 0110
put hexadecimal digits to obtain the results: àË`oH$ g_yh Ho$ ñWmZ na A§H$ {bImo …
(61.6) 16
Thus (97.375) = (61.6) 16
10