Page 167 - FUNDAMENTALS OF COMPUTER
P. 167

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              167


                   3.10 Gray Codes                            3.10 J«o H$moS>
                      Before defining Gray codes first obtain a   J«o H$moS> H$mo n[a^m{fV H$aZo go nyd© `h C{MV hmoJm
                  Gray code for a given binary number:        {H$ XoI|  {H$gr ~mBZar g§»`m  H$m J«o  H$moS> H¡$go
                                                              {ZH$mbVo h¢…
                  Step 1: Record the  MSB of the  given binary  ñQ>on 1: Xr JB© ~mBZar g§»`m Ho$ MSB H$mo d¡go hr ZrMo
                          number.                                     CVma bm|Ÿ&
                  Step 2: Perform arithmetic addition of this bit  ñQ>on 2: Bg MSB H$mo AJbr {~Q> _| Omo‹S>mo VWm hm{gb
                          to  the  adjacent bit. Record  the sum      H$mo N>mo‹S> XmoŸ& `moJ H$mo ZrMo {bImoŸ&
                          and ignore carry.
                  Step 3 : Record the sum until LSB occurs. For  ñQ>on 3: Eogm ~mBZar g§»`m Ho$ LSB Ho$ AmZo VH$ H$amoŸ&
                          example consider following Binary to        {ZåZ {MÌ _| ~mBZar go J«o _| n[adV©Z Xem©`m
                          Gray Conversion.
                                                                      J`m h¡…


                                                  Binary      1  1  0  1  0


                                                  Gray        1  0  1  1  1

                      Now make a table which gives Gray codes     A~ EH$ Vm{bH$m ~ZmVo h¢ Omo 0 go 9 VH$ Ho$ {bE
                  for the decimal digits from 0 to 9:         J«o H$moS> Xem©Vr h¡ …
                                             Decimal    Binary         Gray code
                                              0          0000         0000
                                              1          0001         0001
                                              2          0010         0011
                                              3          0011         0010
                                              4          0100         0110
                                              5          0101         0111
                                              6          0110         0101
                                              7          0111         0100
                                              8          1000         1100
                                              9          1001         1101
                      Now consider the column of Gray codes. It   J«o H$moS> Ho$ ñV§^ H$mo XoIZo go ñnï> h¡ {H$ O~ h_
                  gives an interesting property  of Gray Codes.  EH$ Jo« H$moS> go Xygao H$moS> _| OmVo h¢ Vmo h_ XoIVo h¢ {H$
                  When we move from one  Gray code  to next
                  Gray code, there is a change in one bit position  EH$ hr {~Q> n[ad{V©V hmoVr h¡Ÿ& Bgr JwU H$s ghm`Vm go
                  only. Thus, the Gray codes may be defined as  J«o H$moS> H$mo n[a^m{fV {H$`m Om gH$Vm h¡Ÿ&
                  those codes in which each succeeding number
                  differs from  its previous  number by  one bit
                  position only.
   162   163   164   165   166   167   168   169   170   171   172