Page 168 - FUNDAMENTALS OF COMPUTER
P. 168

NPP













                   168                         Fundamentals of Computers                           NPP


                   Algebraic Simplification of Bool-          ~y{b`Z \$bZ H$m gabrH$aU
                   ean Expression

                      Boolean:  These  are the variables which    ~y{b`Z Ma am{e… `o Bg àH$ma H$s Ma am{e`m± h¢
                  have only two values. For example the input  {OZHo$ {g\©$ Xmo hr _mZ hmoVo h¢& O¡go JoQ> Ho$ BZnwQ> VWm
                  and output  variables used  with gates  are  AmCQ>nwQ> _| Omo am{e`m± Cn`moJ _| AmVr h¢ do ~y{b`Z Ma
                  boolean variables.                          am{e`m± h¡ Š`m|{H$ BZHo$ Ho$db Xmo _mZ hmo gH$Vo h¢Ÿ&
                      Boolean Algebra:  The algebra which deals   ~y{b`Z ~rOJ{UV… Omo  ~rOJ{UV ~y{b`Z Ma
                  with boolean variable is called Boolean algebra.  am{e`m| na H$m`© H$aVm h¡, ~y{b`Z ~rOJ{UV H$hbmVm h¡&
                  The operations performed are called  logic  gånÝZ {H$`o OmZo dmbo Am°naoeÝg bm°{OH$ Am°naoeÝg
                  operations.                                 H$hbmVo h¢Ÿ&
                      Boolean Function: This  is a boolean        ~y{b`Z \$bZ… `h EH$ Eogr ~y{b`Z Ma am{e hmoVr
                  variable which may depend on other Boolean  h¡ {OgH$m _mZ Xygar ~y{b`Z Ma am{e`m| na {Z^©a H$aVm
                  Variables. For example consider the following
                  equation: F = A.B + C                       h¡Ÿ& {ZåZ{b{IV g_rH$aU H$mo XoImo … F = A.B + C
                      In this equation F  is  a  Boolean function  `hm± na F EH$ ~y{b`Z \$bZ h¡ Omo ~y{b`Z Ma
                  which depends upon the values of A, B and C.  am{e`m| A, B Am¡a   C na {Z^©a H$aVm h¡ Ÿ& Bgr{bE
                  Thus, we can write: F = f(A, B, C).         h_ Eogm ^r {bI gH$Vo  h¢… F = f(A, B, C)
                      Any Boolean function may also have only     {H$gr ^r ~y{b`Z \$bZ Ho$ Xmo hr _mZ hmo gH$Vo
                  two values. For example in the above expres-
                  sion F may be ‘1’ or ‘0’ for all possible combi-  h¢ 0 `m 1; O¡go Cnamoº$ g_rH$aU _| A, B, C Ho$ g^r
                  nations of A, B and C.                      _mZm| Ho$ {bE F Ho$ {g\©$ Xmo _mZ hmo gH$Vo h¢Ÿ&
                   3.11 Logic Diagram                         3.11 cm°{OH$ S>m`J«m_
                      When Boolean function is transformed into   O~ {H$gr ~y{b`Z \$bZ H$mo EH$ Eogo Vm{H©$H$
                  a  circuit containing  logic gates,  it  is called  a  n[anW _| ~Xb {X`m OmE Omo CgHo$ Ma am{e`m| _|
                  logic diagram.  For example the Boolean     gå~ÝY ñWm{nV H$a| Vmo Bgo bm°{OH$ S>m`J«m_ H$hVo h¢Ÿ&
                  function F shown below can be transformed to  CXmhaUV… {ZåZ  ~y{b`Z \$bZ  F Ho$ {bE bm°{OH$
                  the following logic diagram:                S>m`J«m_ Bg àH$ma go ~Zm`m Om gH$Vm h¡…

                                       A
                                       B


                                        C                                    F = A.B+C

                      Boolean algebra is used to show the relation  ~y{b`Z ~rOJ{UV  H$m Cn`moJ  H$aHo$ BZnwQ>m|  d
                  between  inputs and  outputs in the form of  an  AmCQ>nwQ> _| gå~ÝY H$mo ì`§OH$, gË` Vm{bH$m `m bm°{OH$
                  expression. This relationship may be known to us
                  from  a truth  table, or  logic diagram.  Boolean  S>m`J«m_ go g_P gH$Vo h¢Ÿ& gmW hr EH$ gab ì`§OH$
                  Algebra shows how to simplify the expression so  àmßV H$aHo$  n[anW H$mo N>moQ>m  VWm gñVm ~Zm`m  Om
                  as to obtain a simple and economical logic design.  gH$Vm h¡Ÿ&
   163   164   165   166   167   168   169   170   171   172   173