Page 170 - FUNDAMENTALS OF COMPUTER 
        P. 170
     NPP
                   170                         Fundamentals of Computers                           NPP
                  9.     A + B = B + A
                      Proof: Consider the following table:        {ZåZ Vm{bH$m ~ZmAmo…
                                                A        B        A+B        B+A
                                                0         0         0          0
                                                0         1         1          1
                                                1         0         1          1
                                                1         1         1          1
                      The values of expression A + B and B + A    AV … A + B d  B + A ~am~a h¡Ÿ& Š`m|{H$ BZ XmoZm|
                  are same for all combinations of A and B.   ì`§OH$m| Ho$ _mZ ha ~ma g_mZ Am aho h¢Ÿ&
                  10.    A.B = B.A
                      Proof: Consider the following table:        Proof: {ZåZ Vm{bH$m H$mo ~ZmAmo …
                                              A       B        A.B      B.A
                                              0       0         0        0
                                              0       1         0        0
                                              1       0         0        0
                                              1       1         1         1
                      The expressions A.B and B.A are similar     AV… A d B Ho$ g^r _mZm| Ho$ {bE A.B VWm B.A
                  for all values of A and B.                  ~am~a h¡Ÿ&
                  11.    A + (B + C) = (A + B) + C
                      Proof: Consider the following Table:        Proof: {ZåZ Vm{bH$m H$mo ~ZmAmo …
                                           A     B       C    A + (B + C)  (A + B) + C
                                           0      0      0        0         0
                                           0      0      1        1         1
                                           0      1      0        1         1
                                           0      1      1        1         1
                                           1      0      0        1         1
                                           1      0      1        1         1
                                           1      1      0        1         1
                                           1      1      1        1         1
                      Thus, the expression  in forth column is    Bg àH$ma, Mm¡Wo H$m°b_ H$m g_rH$aU nm±Mdo H$m°b_ Ho$
                  equal to  the  expression in  fifth column.
                  Therefore: A + (B + C) = (A + B) + C        g_rH$aU Ho$ ~am~a h¡Ÿ& AV…  A + (B + C) = (A + B) + C
     	
