Page 169 - FUNDAMENTALS OF COMPUTER
P. 169

NPP               Number System, Boolean Algebra and Logic Circuits              169


                   3.12 Basic Identities in Boolean Algebra    3.12 ~y{b`Z ~rOJ{UV _| _yb^yV Cnà_o`
                      Identities are  the  relationships between   Cnà_o` {H$Ýht Ma am{e`m|  d ì`§OH$m|  Ho$ ~rM
                  single variables or expressions which are used  Eogo à_o` hmoVo h¢ {OZH$s ghm`Vm go {H$gr ~‹S>o ~y{b`Z
                  to minimise a Boolean expression. We will see
                  the identities and the proof for each identity:  ì`§OH$ H$mo gab {H$`m  Om gH$Vm h¡Ÿ& BZHo$ ñdê$n
                                                              VWm {dñV¥V  {ddaU Bg  àH$ma h¢…
                  1.     A + 0 = A
                      Proof.       When,            A = 0,     A + 0 = 0
                                                    A = 1,     A + 0 = 1
                      Thus, for all values of A, the result is same  AV … A Ho$ àË`oH$ _mZ Ho$ {bE n[aUm_ A Ho$ ~am~a
                  as A.                                       hr hmoVm h¡ Ÿ&
                  2.     A.0 = 0
                      Proof.       When             A = 0,     A.0 = 0
                                   When,            A = 1,     A.0 = 0
                      The result is zero for all values of A.     A Ho$ g^r _mZm| Ho$ {bE n[aUm_ 0 h¡ Ÿ&
                  3.     A + 1 = 1    NPP
                      Proof.       When,            A = 1,     A + 1 = 1
                                                    A = 0,     A + 1 = 1
                      Thus, the result is one for all values of A.  AV … A Ho$ g^r _mZm| Ho$ {bE n[aUm_ 1 h¡ Ÿ&
                  4.     A.1 = A
                      Proof.       When,            A = 0,     A.1 = 0
                                                    A = 1,     A.1 = 1
                      The result is same as the value of A.       A Ho$ g^r _mZm| Ho$ {b`o n[aUm_ A h¡ Ÿ&
                  5.     A + A = A
                      Proof.       When,            A = 0,     A + A = 0
                                                    A = 1,     A + A = 1
                      Thus the result is always same as A.        A Ho$ g^r _mZm| Ho$ {bE n[aUm_ A h¡ Ÿ&
                  6.     A.A = A
                      Proof.       When             A = 0,     A.A = 0
                                                    A = 1,     A.A = 1
                      The result is always same as A.             AV… n[aUm_ ha ~ma A Ho$ ~am~a h¡ Ÿ&
                  7.     A A1+  =
                      Proof.       When             A = 0,      A A1+  =
                                                    A = 1,      A A1+  =
                      The result is always one for all values of A.  AV… n[aUm_ ha ~ma 1 Ho$ ~am~a h¡Ÿ&

                  8.     A.A 0=
                      Proof.       When             A = 0,      A.A 0=

                                                    A = 1,      A.A 0=
                      Thus the result is zero for all values of A.  AV… n[aUm_ ha ~ma 0 h¡Ÿ&
   164   165   166   167   168   169   170   171   172   173   174