Page 171 - FUNDAMENTALS OF COMPUTER
P. 171

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              171


                  12.    A.(B.C) = (A.B).C
                      Proof: The values of these expressions are  Proof: gyÌ Z§. 11 Ho$ AZwgma XmoZm| ì`§OH$m| Ho$
                  found to be equal for all possible values of A,  {bE gyÌ H$s Vm{bH$m ~ZmH$a CZHo$ _mZ kmV {H$E Om
                  B and C. This can be proved by drawing a table
                  similar to that of identity 11.             gH$Vo h¡Ÿ&
                  13.    A.(B + C) = A.B + A.C
                      Proof: A Table can be drawn similar to the  Proof: gyÌ  11 Ho$ g_mZ  Vm{bH$m  ~ZmH$a XmoZm|
                  table drawn in identity No. 11. We can find that  ì`§OH$m| H$mo ~am~a {gÕ {H$`m Om gH$Vm h¡… AV… A, B d
                  the two  expressions have  same values for all  C Ho$ g^r g‘yhm| Ho$ {bE XmoZm| ì¶§OH$m| Ho$ ‘mZ g‘mZ h¢&
                  possible combinations of A, B and C.
                  14.    A + B.C = (A + B) . (A + C)
                      Proof: Take R.H.S.
                                              (A + B) . (A + C) = A.A + A.C + B.A + B.C
                                                              = A + A.C + A.B + B.C
                                                              = A(1 + C + B) + B.C
                                                              = A.1 + B.C
                                                              = A + B.C = L.H.S.
                        Thus,                          R.H.S. = L.H.S.      Hence Proved.

                  15.    A =  A
                      Proof:

                      Put                    A =   , 0     A =  0 = = 0 =  A
                                                             1
                      put                    A =  , 1      A = = 0 = =  A
                                                                1
                                                          1
                   3.13 De Morgan’s Theorems                   3.13 {S> _m°J©Z Ho$ à_o`
                      These  theorems are used in  algebraic      BZH$m Cn`moJ {H$gr ~y{b`Z \$bZ Ho$ ~rOJ{UVr`
                  simplification of Boolean functions. There are  gabrH$aU _| hmoVm h¡Ÿ& {S>_m°J©Z Ho$ {ZåZ Xmo à_o` h¢…
                  two Demorgan’s theorems:
                                                      1.   A B+  =  A.B

                                                      2.  A.B =  A +  B
                  First Theorem                               àW_ à_o`

                      Consider  first theorem  A B+  =  A.B . The  Bg ~y{b`Z g_rH$aU H$mo H$WZ Ho$ ê$n _| Bg
                  Boolean equation can be  stated as “The     àH$ma {bIm Om gH$Vm h¡… “{H$gr `moJ H$m H$m°påßb_|Q>,
                  complement  of a logical  sum  is  equal to the  ~am~a hmoVm h¡, H$m°påßb_|Q> Ho$ JwUZ\$b Ho$ Ÿ&”
                  product of complements.”
                      Proof of Theorem I: Draw the truth table    àW_ à_o` H$m gË`mnZ: Xmo BZnwQ> d¡[aE~b A VWm
                  taking two input variables A and B and getting  B boH$a Ed§ Xmo \§$ŠeZ  A +  d  A.B  Ûmam gË`
                                                                                     B
                  the two functions  A +  B  and  A.B .
                                                              Vm{bH$m ~Zm`|Ÿ&
   166   167   168   169   170   171   172   173   174   175   176