Page 172 - FUNDAMENTALS OF COMPUTER
P. 172

NPP













                   172                         Fundamentals of Computers                           NPP



                                                  A A A  B B B  A +  B  A . B

                                                  0 0 0  0 0 0  1 1 1    1 1 1
                                                  0 0 0  1 1 1  0 0 0    0 0 0
                                                  1 1 1  0 0 0  0 0 0    0 0 0
                                                  1 1 1  1 1 1  0 0 0    0 0 0

                      We can see from the above truth table that  CnamoŠV gË`Vm{bH$m go ñnï> h¡ {H$ V¥Vr` ñV§^ Ho$
                  the values in third column are exactly similar  g^r _mZ MVwW© ñV§^ Ho$ g^r _mZm| Ho$ ~am~a h¡ Ÿ& AV…
                  to the values in forth column. Therefore we can
                  say that the expression in third column is equal  XmoZm| ì`§OH$ ~am~a h¡ …
                  to the expression in forth column. Thus:

                                                       A B+  =  A.B
                  Second Theorem                              {ÛVr` à_o`
                      Now, draw the truth table taking two input  EH$ gË` Vm{bH$m ~ZmE {Og_| A VWm B d Xmo
                  variables A and B, and two Boolean functions  ì`§OH$  A.B  Am¡a  A +  hm|Ÿ&
                                                                                B
                  A.B  and  A +  B .
                      Proof:                                  gË`mnZ:


                                                   A      B       B . A  A +  B
                                                   0      0      1      1
                                                   0      1      1      1
                                                   1      0      1      1
                                                   1      1      0      0

                      We can see that  the expression  in third   CnamoŠV Vm{bH$m go ñnï> h¡ {H$ V¥Vr` ñV§^ Ho$
                  column is equal to the expression in forth  g^r  _mZ, MVwW©  ñV§^  Ho$ g^r _mZm| Ho$ ~am~a h¡Ÿ&
                  column for all possible values of A and B. Thus,
                  A.B =  A B+ .                               AV… A B . =  A + B
                      The DeMorgan’s second theorem can be        {S>_m°J©Z Ho$ {ÛVr` à_o` H$mo  H$WZ Ho$ ê$n _|
                  stated in words as:                         Bg àH$ma  go {bIm Om  gH$Vm h¡…
                      “The complement of a  logical product is    “H$m°påßb_|Q> H$m `moJ, JwUZ\$b Ho$ H$m°påßb_|Q> Ho$
                  equal to the logical sum of complements.”   ~am~a hmoVm h¡ Ÿ&”
   167   168   169   170   171   172   173   174   175   176   177