Page 173 - FUNDAMENTALS OF COMPUTER
P. 173

NPP










                    NPP               Number System, Boolean Algebra and Logic Circuits             173


                    3.14 Simplification of Boolean Functions    3.14 ~y{b`Z \$bZ H$m gabrH$aU

                    Important Formulae Used                     _hËdnyU© gyÌ
                               1.    A + A = A                             4.    A  A . = 0
                               2.    A.A = A
                                                                           5.    A+  A  B . = A+ B
                               3.    A + A = 1
                                                                           6.    A = A
                        Note  : 1.  The above  laws and  formulae   ZmoQ>:1. Cnamoº$ {Z`_ Xmo go A{YH$ Ma am{e`m| Ho$
                    used are  also applicable to more than  two  {bE bmJy hmoVo h¢Ÿ& O¡go,
                    variables. e.g.

                                           A +  A +  A +  ................... = A
                                                                         .
                                                                      .
                                           A +  B +  C +  ................... = A BC ............
                        2. The  variables  may  be replaced by      2. Ma am{e`m| H$mo ì`§OH$m| go {dñWm{nV {H$`m Om
                    expressions. e.g.
                                                                gH$Vm h¡…
                                                     A.C +  A.C =  A.C
                                                       XY +  P  =  XY . P

                                                              A B.  =  AB.
                         Problem 3.23                                àíZ 3.23

                        Simplify the following:                     {ZåZ H$mo gab H$s{OE…
                        (a)  F =A + A.B + A +AB +AB                 (b)  Y =   C . B . A  +  C . B . A  +  B . A  +  B . A

                        (c)  Q =  XY+  X Y +  Y . X  + XYZ+  Z . Y . X
                    Solution:                                   hc:
                        (a)  F =  A +  A  B . +  A +  A B +  AB     (b)  Y =  A.B.C +  A.B.C +  A.B +  AB

                            F =  (A +  A ) +  A  ( B +  ) B +  AB       Y =  AB (C +  C +  ) 1 +  A B
                            F =  ( ) +  A  A +  .1  AB  =  (A +  A ) +  AB  Y =  A B. .1  +  AB =  AB +  AB
                                                                              (
                            F = +1  AB  =  1                            Y =  AB +   ) B  =   A
                        (c)  Q =  Y . X  + X Y +  Y . X  + XYZ +  Z . Y . X

                            Q = XY + X + X  Z . Y
                            Q = XY (1+  Z ) X+  (Y+ Y ) X+  Z . Y .
                            Q= X (Y+ Y Z ) X+  ........ Since   Y +  = Y.Z  Y Z
                                                                +
                            Q= X (Y+ Z ) X+   =  XY +  (XZ +  X )  ........  Since   X  +  = X.Z  X +  Z
                            Q= XY+  X+ Z  ........ Since   X +  = X.Y  X Y    =  Y +  X +  Z
                                                              +
   168   169   170   171   172   173   174   175   176   177   178