Page 155 - FUNDAMENTALS OF COMPUTER
P. 155

NPP               Number System, Boolean Algebra and Logic Circuits              155


                      (b) The given  octal  number  is a purely   (b) 0.31 EH$ nyU©V… Am§{eH$ am{e h¡ Ÿ& BgH$m
                  fractional number. Its decimal equivalent can  Xe_bd Vwë` Bg àH$ma go {ZH$mbm Om gH$Vm h¡ Ÿ&
                  be calculated as below :
                                                  0. 3               1
                                                   8 -1             8 -2
                                                   3                 1       25 = .39
                                                   8        +       64     =   64
                      Thus                           (0.31)  = (0.39) 10
                                                          8
                      (c) The   given octal number 62.101  is a   (c) 62.101 EH$ {_{lV Am°ŠQ>b g§»`m h¡ {OgH$m
                  mixed number.  The  decimal equivalent can be  Xe_bd Vwë` Bg àH$ma go àmá {H$`m Om gH$Vm h¡ …
                  calculated as below :
                                         6       2       .1      0       1
                                         8 1     8 0     8 -1    8 -2   8 -3
                                                         1               1
                                         48  +   2   +       +   0   +        = 50.126
                                                         8              512
                      Thus,           NPP          (62.101)  = (50.126) 10
                                                          8
                  Hexadecimal to Decimal Conversion           hoŠgmS>o{g_b go S>o{g_b _| H$ÝdO©Z
                      The  base of Hexadecimal number system      hoŠgmS>o{g_b g§»`m  nÕ{V H$m AmYma 16 h¡,
                  is 16. Therefore to convert a given Hexadecimal  Bgr{bE gmar g§»`m H$ÝdO©Z _| 16 H$m Cn`moJ H$a|Jo Ÿ&
                  number  into decimal  we  use  16 for all the
                  calculations. But it  is very important  to  bo{H$Z `hm± EH$ ~mV `mX aIZm Amdí`H$ h¡ {H$ O~ ^r
                  remember  that whenever,  digit "A" comes in  hoŠgmS>o{g_b g§»`m _| A AmE BgH$m _mZ 10 aI|, B
                  hexadecimal number put its decimal equivalent  AmE Vmo 11 aI|, Bgr Vah F AmE Vmo 15 aI|Ÿ& ZrMo
                  10 for the  calculation, whenever "B" comes put  Xem©B© JB© g_ñ`mAm| go `h EH$X_ ñnîQ> hmo OmEJm…
                  11 and  so  on. The following examples  will
                  illustrate the proce-dure:
                       Problem 3.14                                àíZ 3.14
                      Convert following  Hexadecimal number       {ZåZm§{H$V hoŠgmS>o{g_b g§»`mAm| H$mo Xe_bd _|
                  into decimal :
                                                              ~Xbmo…
                                  (a) (98) 16     (b) (3F2) 16    (c) (10.A3) 16  (d) (0.41) 16
                  Solution :                                  hc :

                      (a) The given Hexadecimal number (98) 16    (a) hoŠgmS>o{g_b g§»`m (98)  H$mo ZrMo Xem©B© {d{Y
                                                                                       16
                  can be converted into decimal with the help of  Ho$ AZwgma Xe_bd _| ~Xbm Om gH$Vm h¡:
                  the following procedure:
                                               9             8
                                               16 1          16 0
                                               144    +      8      = 152
                      Thus,                           (98)  = (152) 10
                                                         16
   150   151   152   153   154   155   156   157   158   159   160