Page 150 - FUNDAMENTALS OF COMPUTER
P. 150

NPP













                   150                         Fundamentals of Computers                           NPP


                  Decimal to Hexadecimal Conversion           Xe_bd go hoŠgmS>o{g_b H$Z²de©Z
                      A given decimal number can be converted     {H$gr Xe_bd g§»`m H$mo hoŠgmS>o{g_b g§»`m _|
                  to  Hexadecimal number  using the  procedure
                  described in table 3.4. Here the base r = 16 is  ~XbZo Ho$ {bE `m Vmo 16 go ^mJ XoVo h¢ `m JwUm H$aVo h¢,
                  used for division and multiplication purpose.  O¡gm {H$ Vm{cH$m 3.4 _| g_Pm`m J`m h¡ Ÿ& `hm§ `mX
                  One important thing to be remembered here is  aIZo `mo½` _hËdnyU© ~mV `h h¡ {H$ ^mJ XoZo na eof\$b
                  that if a remainder is 10 write A, if it is 11 write  `m JwUm H$aZo na nyUmªH$ `{X 10 àmá N>moQ>m h¢ Vmo Bgo A
                  B and so on. Remainder is always a single digit
                  number.  Following  examples will show  the  {bI|, 11 Vmo B {bIo , Eogm 15 VH$ {H$`m Om gH$Vm h¡,
                  greater details :                           {Ogo F {bI| Ÿ& eof’$b Ho$db EH$ A§H$ hmoJm&
                       Problem 3.9                                 àíZ 3.9
                      Convert following decimal numbers into      hoŠgmS>o{g_b _| ~X{bE …
                  Hexadecimal:
                                      (a) 125     (b) 95      (c) 0.23    (d) 49.31
                  Solution :                                  hc :
                      (a) The  given decimal number  125 is an    (a) Xr JB© g§»`m 125 EH$ nyUmªH$ h¡ Ÿ& AV… Bgo
                  Integer.  Therefore divide it by  16, write
                  remainders and read upward :                16 go ^mJ Xmo, eof\$b {bImo d D$na H$s Amoa n‹T>mo …
                                                         16  125  D
                                                           16  7  7
                                                             0
                      Thus,                          (125)   =  (7D) 16
                                                          10
                      (b) The Hexadecimal number  can be          (b) BgH$m hoŠgmS>ogr_b Bg Vah go àmá {H$`m Om
                  obtained as  follows:                       gH$Vm h¡:

                                                        16  95  F
                                                        16  5   5
                                                            0
                      Thus,                            (95)  = (5F) 16
                                                          10
                      (c) The given  decimal number  0.23 is a    (c) 0.23 EH$ Am§{eH$ g§»`m h¡ Ÿ& Bgr{bE Bgo 16
                  fraction. Therefore we will multiply by  16, and  go JwUm H$a|Jo& nyUmªH$ {bI|Jo VWm D$na go ZrMo n‹T>|Jo:
                  write integer parts. Read  downward:
                                           .23 × 16 = 3.68       3
                                          .68 × 16 = 10.88       A
                                          .88 × 16 = 14.08       E
                      Thus,                          (.23)   = (.3AE) 16
                                                         10
                      (d) The given decimal number  49.31 is a    (d) 49.31 EH$ {_{lV g§»`m h¡Ÿ& AV… nyUmªH$ 49
                  mixed number containing  integer as well as  VWm A§e 0.31 hoVw AbJ-AbJ H$ÝdO©Z H$a|Jo…
                  fractional parts.  Now  consider  each part
                  separately :
   145   146   147   148   149   150   151   152   153   154   155