Page 148 - FUNDAMENTALS OF COMPUTER
P. 148
NPP
148 Fundamentals of Computers NPP
2 24 0
2 12 0
2 6 0
2 3 1
2 1 1
0
24
( ) → (11000 ) 2
10
Now, consider the fractional part : A~ Am§{eH$ {hñgo H$m n[adV©Z H$a| Ÿ&
Product Integer Part
(JwUZ\$b) (nyUmªH$)
.36 × 2 = 0.72 0
.72 × 2 = 1.44 1
.44 × 2 = 0.88 0
.88 × 2 = 1.76 1
.76 × 2 = 1.52 1
.52 × 2 = 1.04 1
Now we can terminate the division by A~ h_ bJ^J N>… A§H$m| VH$ àmá H$a| Vmo…
taking approximate results:
(.36 ) → (.010111 ) 2
10
Combining both integer part and fractional nyUmªH$ d Am§{eH$ ^mJ Ho$ XmoZm| n[aUm_m| H$mo {_bmH$a
part we can get the result: h_ CÎma {bI gH$Vo h¢:
(24.36 ) → (11000. 010111 ) 2
10
Decimal to Octal Conversion Xe_bd go Am°ŠQ>b H$ÝdO©Z
Converting a decimal number into octal
number is exactly similar to decimal to Binary {H$gr Xe_bd g§»`m H$mo Am°ŠQ>b _| ~XbZm R>rH$
Conversion. Here r= 8. That is for integer part Cgr àH$ma h¢, {Og àH$ma Cgo ~mBZar _| ~XbZm Ÿ& `hm±
divide the given decimal number by 8 and for na h_ r = 8 boVo h¢ Ÿ& nyUmªH$ Ho$ {bE Xe_bd g§»`m H$mo
fractional parts multiply by 8. The whole 8 go ^mJ XoVo h¢ VWm AnyUmªH$ Ho$ {bE 8 go JwUm H$aVo h¢Ÿ&
procedure is depicted in table 3.4. Bg g§nyU© {d{Y H$mo Vm{cH$m 3.4 _| Xem©`m J`m h¡ Ÿ&
Now consider the following problems to A~ ZrMo {bI| CXmhaU H$s ghm`Vm go h_ Am°ŠQ>b
see the conversion in more detail.
_| ~XbZm grIVo h¢ Ÿ&
Problem 3.8 àíZ 3.8
Convert following decimal numbers into {ZåZ{b{IV Xe_bd g§»`mAm| H$mo Am°ŠQ>b _|
octal:
~Xbmo:
(a) 53 (b) 0.61 (c) 14.52