Page 144 - FUNDAMENTALS OF COMPUTER
P. 144

144                         Fundamentals of Computers                           NPP


                      Here, digits '0' to '9' have the same meaning  `hm§ na 0 go 9 Ho$ AW© dhr h¢ Omo {H$ Xe_bd
                  as  in decimal  number  system.  The digit  A  g§»`m nÕ{V _| h¢ Ÿ& bo{H$Z ‘A’ H$m _mZ Xe_bd Ho$ ‘10’
                  represents decimal 10 and F represents decimal  Ho$ ~am~a hmoVm h¡ Ÿ& ‘B H$m 11 Ho$ VWm Bgr Vah F H$m
                  15. Note that A, B, C, D, E, F, are taken from  _mZ ‘15’ Ho$ ~am~a hmoVm h¡ Ÿ& hmbm§{H$ A,B, C, D, E, F
                  English  Alphabets  but  here they   represent  A§J«oOr Ho$ Ajam| go {bE JE h¢ Ÿbo{H$Z `hm± na `o g§Ho$V
                  numbers. It is very useful to remember 4-bit binary  A§H$ h¡ Ÿ& H$B© ñWmZm| na hoŠgmS>o{g_b A§H$m| Ho$ 4-{~Q> _|
                  equivalent of the Hexadecimal digits:       ~mBZar Vwë`m§H$m| H$m H$m_ n‹S>Vm h¡ Ÿ& Bgr{bE Vm{cH$m
                                                              3.3 H$mo AÀN>r Vah `mX H$a boZm Mm{hE Ÿ&
                                                         Table 3.3
                       Decimal      Hex.         4 bit       Decimal       Hex.       4 bit.
                                    Digit       Binary                     Digit     Binary
                           0         0           0000           8            8        1000
                           1         1           0001           9            9        1001
                           2         2           0010           10          A         1010
                           3         3           0011           11          B         1011
                                                 0100
                           4         4 NPP                      12          C         1100
                           5         5           0101           13          D         1101
                           6         6           0110           14          D         1110
                           7         7           0111           15           F        1111
                      The  Counting sequence can also  be         hoŠgmS>o{g_b _| g§»`mAm| H$s JUZm g_mZ {gÕm§V
                  generated using the same principle. Increment  H$m Cn`moJ H$aVo hþE H$s Om gH$Vr h¡ Ÿ& A§H$m| H$mo grYo
                  the  digits until    you reach  at the greatest  hmW H$s Va\$ go ~‹T>mZm ewê$ H$a| Ÿ& O¡go hr g~go ~‹S>m
                  digit. Now,  reset this digit  to smallest and  A§H$ AmE, CgHo$ ~mX g~go N>moQ>m A§H$ {bI X| VWm EH$
                  take  a carry. Thus,  first few numbers  of
                  Hexadecimal number  system can be written   hm{gb H$m b| Ÿ& Bg Vah go hoŠgmS>o{g_b g§»`m nÕ{V
                  as:                                         _| àW_ Hw$N> g§»`mE± Bg Vah go àmá H$s Om gH$Vr h¢…
                             0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,  F, 10, 11, 12, 13, 14, 15, 16, 17, 18,
                             19, 1A, 1B, 1C, 1D, 1E, 1F, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 2A, 2B

                       Problem 3.4                                 àíZ 3.4
                      What will be the next Hexadecimal to the    ZrMo {bIo hoŠgmS>o{g_b g§»`m hoVw AJbr g§»`m
                  following hexadecimal numbers.              àmßV H$amo …

                                      (1) 20      (2)  39     (3) FF          (4) 10F
                  Solution:                                   hc:
                      (1)    20 → 21   (2)  39 →  3A       (3)  FF → 100     (4)   10F → 110
   139   140   141   142   143   144   145   146   147   148   149