Page 141 - FUNDAMENTALS OF COMPUTER
P. 141

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              141


                      Thus, Binary 1001 is equivalent to decimal  AV… ~mBZar g§»`m 1001 Xe_bd g§»`m 9 Ho$
                  9. This can be symbolically written as:     Vwë` h¡ Ÿ& Bgr ~mV H$mo gm§Ho${VH$ ê$n go Bg Vah àX{e©V

                                                              {H$`m Om gH$Vm h¡ Ÿ:
                                                      (1001)  = (9) 10
                                                            2
                      The  subscript shows the radix              g~pñH«$ßQ> noaoÝWr{gg go {bIr  J`r g§»`m  go
                  corresponding to the  number  written in  the  gå~pÝYV a¡{S>Šg Xem©Vm h¡Ÿ&
                  parentheses.
                      As we have seen in the previous example     O¡gm {H$ CnamoŠV CXmhaU _| XoIm J`m h¡ g~go XmE±
                  that the right most bit was  multiplied by 1 and  hmW dmbr {~Q> H$mo {g\©$ EH$ go JwUm H$aVo h¢, AV… Bgo
                  the left most bit was multiplied by 8. Therefore  LSB (Least Significant Bit) AWm©V² g~go H$_ ^ma
                  the right most bit of any binary number is called  H$s {~Q> H$hVo h¢ Ÿ& O~{H$ g~go ~mB© dmbr {~Q> H$mo 8 go
                  Least Significant Bit (LSB) and the Left most
                  bit is called Most Significant Bit  (MSB). The  JwUm {H$`m J`m& Bg{bE Bgo MSB (Most Signifi-
                  diagram Shown  below will  help   in        cant bit) `m g~go A{YH$ ^ma dmbr {~Q> H$hVo h¢ Ÿ& ZrMo
                  remembering the Concept.                    Xem©E {MÌ H$s ghm`Vm go Bgo `mX aIm Om gH$Vm h¡ Ÿ&
                                               1       0      0       1
                                                ↑                     ↑
                                               MSB                  LSB

                      Memorising the  binary equivalents  of      Xe_bd g§»`mE± 1 go 15 VH$ Ho$ ~mBZar Vwë` `mX
                  decimal  numbers from 1 to 15 is useful. The  aIZm ~hþV hr Amdí`H$ h¡ Ÿ& Bgo  Vm{cH$m 3.1 _| Xem©`m
                  following table Shows the equivalents:      J`m h¡Ÿ& Bgr Q>o~b Ho$ ZrMo Hw$N> {~Q> Ho$ g_yhm| Ho$ Zm_ {XE

                                                              JE h¢Ÿ& BÝh| ^r `mX aIZm Oê$ar h¡Ÿ&
                                                        Table 3.1
                         Decimal               Binary               Decimal                Binary
                             0                    0                    8                    1000
                             1                    1                    9                    1001
                             2                   10                    10                   1010
                             3                   11                    11                   1011
                             4                   100                   12                   1100
                             5                   101                   13                   1101
                             6                   110                   14                   1110
                             7                   111                   15                   1111
                  Sometimes groups of bits are used.              2   bits = G bits (Giga bits) = Gb
                                                                   30
                      Following are important:                    2   bits = T bits = (Tera bits) = Tb
                                                                   40
                      2 2  = 4 bits  = Nibble                     2  x 8 bits = 1 K Byte (KB)
                                                                   10
                      2 3  = 8 bits =  Byte                       2  x 8 bits = 1 M Byte (MB)
                                                                   20
                      2 10  = 1024 bits = Kbits (kilobits) = Kb   2  x 8 bits = 1 G Byte (GB)
                                                                   30
                       20
                      2   bits = M (Mega bits) = Mb               2 x 8 bits = 1 T Byte (TB)
                                                                   40
   136   137   138   139   140   141   142   143   144   145   146