Page 157 - FUNDAMENTALS OF COMPUTER
P. 157

NPP               Number System, Boolean Algebra and Logic Circuits              157


                  Solution  :                                 hc :
                      (a) The given number  230 has a base equal  (a)  Xr JB© g§»`m 230 H$m AmYma 5 h¡ Ÿ& AV…
                  to 5. Therefore the decimal equivalent can be  BgH$m Xe_bd _mZ Bg àH$ma h¡ …
                  calculated as follows :
                                               ⇒ 2 × 5  + 3 × 5  + 0 × 5 0
                                                             1
                                                      2
                                               ⇒ 50 + 15 + 0
                                               ⇒ 65
                      Thus,                           (230)  = (65) 10
                                                           5
                      (b) The decimal equivalent  of the mixed    (b)  {_{lV g§»`m (14.22)  H$m Xe_bd _mZ Bg
                                                                                      6
                  number (14.22)  can be calculated  as below:  àH$ma h¡…
                               6
                                        1      4      .      2      2
                                        6 1    6 0           6 -1   6 -2

                                                              2      2
                                        6    +  4     +        +     +      = 10.38
                                                              6      36
                      Thus,           NPP           (14.22)  = (10.38) 10
                                                          6
                      (c) The  given number (0.121)  is a purely  (c) (0.121)  EH$ nyU©V… Am§{eH$ g§»`m h¡ {OgH$m
                                                                           3
                                                3
                  fractional number  with base 3.  The Decimal  AmYma 3 h¡& AV… BgH$m Xe_bd Vwë` Bg àH$ma go àmá
                  equivalent can be calculated as below :
                                                              {H$`m Om gH$Vm h¡ …
                                               0   .  1      2      1
                                                      3 -1   3 -2   3 -3
                                                       1  +  2  +  1  =  . 55
                                                       3    9    27
                      Thus,                          (0.121)  = (0.55) 10
                                                           3
                      (d) The given mixed number (46.78)  has a   (d) (46.78)  EH$ {_{lV g§»`m h¡ Ÿ& BgH$m Xe_bd
                                                                           9
                                                     9
                  base 9. The Decimal value of the number is:  _mZ Bg àH$ma h¡ …
                                                                  -1
                                                          0

                                                   1
                                               4 × 9  + 6 × 9  + 7 × 9 + 8 × 9 -2
                                                      7  8
                                               36 +  6+  +   = 42.86
                                                      9  81
                      Thus,                         (46.78)  = (42.86) 10
                                                          9
                   3.7  Binary to  Octal and  Hexadeci-       3.7  ~mBZar go Am°ŠQ>b d  hoŠgmS>o{g_b _|
                   mal Conversion and Vice-versa              n[adV©Z VWm {dnarV
                      We have seen the procedure to convert any   A^r VH$ h_Zo {H$gr Xe_bd g§»`m H$mo {H$gr AÝ`
                  given number into decimal. At the same time,  nÕ{V _| ~XbZm d BgH$m  CëQ>m H$aZm grIm Ÿ& bo{H$Z h_|
                  we can convert a decimal number into any other
                  base. In  both the cases, one  of the numbers  EH$ g§»`m H$mo Xygar g§»`m _| n[adV©Z H$aZm h¡ Am¡a XmoZm|
   152   153   154   155   156   157   158   159   160   161   162